Database
SURREAL NUMBERS
Conway cut representation
Cofinality and coinitiality
cofcutr2d
Metamath Proof Explorer
Description: If X is the cut of A and B , then B is coinitial with
( _Right X ) . Second half of theorem 2.9 of Gonshor p. 12.
(Contributed by Scott Fenton , 25-Sep-2024)
Ref
Expression
Hypotheses
cofcutrd.1
⊢ ( 𝜑 → 𝐴 <<s 𝐵 )
cofcutrd.2
⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) )
Assertion
cofcutr2d
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 )
Proof
Step
Hyp
Ref
Expression
1
cofcutrd.1
⊢ ( 𝜑 → 𝐴 <<s 𝐵 )
2
cofcutrd.2
⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) )
3
cofcutr
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ) )
4
1 2 3
syl2anc
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ) )
5
4
simprd
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 )