Metamath Proof Explorer


Theorem cofcutr2d

Description: If X is the cut of A and B , then B is coinitial with ( _RightX ) . Second half of theorem 2.9 of Gonshor p. 12. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Hypotheses cofcutrd.1 ( 𝜑𝐴 <<s 𝐵 )
cofcutrd.2 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
Assertion cofcutr2d ( 𝜑 → ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤𝐵 𝑤 ≤s 𝑧 )

Proof

Step Hyp Ref Expression
1 cofcutrd.1 ( 𝜑𝐴 <<s 𝐵 )
2 cofcutrd.2 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
3 cofcutr ( ( 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∃ 𝑦𝐴 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤𝐵 𝑤 ≤s 𝑧 ) )
4 1 2 3 syl2anc ( 𝜑 → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∃ 𝑦𝐴 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤𝐵 𝑤 ≤s 𝑧 ) )
5 4 simprd ( 𝜑 → ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤𝐵 𝑤 ≤s 𝑧 )