| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 2 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) → 𝐴 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝐴 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐴 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 5 |
4
|
sselda |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 6 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 <<s 𝐵 ) |
| 7 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 9 |
8
|
simp2d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 10 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 11 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
| 12 |
11
|
snid |
⊢ ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } |
| 13 |
12
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } ) |
| 14 |
9 10 13
|
ssltsepcd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 <s ( 𝐴 |s 𝐵 ) ) |
| 15 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
| 16 |
14 15
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 <s 𝑋 ) |
| 17 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } |
| 18 |
17
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) |
| 19 |
18
|
eleq2d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) ) |
| 20 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) |
| 21 |
19 20
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) ) |
| 22 |
5 16 21
|
mpbir2and |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( L ‘ 𝑋 ) ) |
| 23 |
|
leftssno |
⊢ ( L ‘ 𝑋 ) ⊆ No |
| 24 |
23 22
|
sselid |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ No ) |
| 25 |
|
slerflex |
⊢ ( 𝑥 ∈ No → 𝑥 ≤s 𝑥 ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤s 𝑥 ) |
| 27 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥 ) ) |
| 28 |
27
|
rspcev |
⊢ ( ( 𝑥 ∈ ( L ‘ 𝑋 ) ∧ 𝑥 ≤s 𝑥 ) → ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
| 29 |
22 26 28
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
| 30 |
29
|
ralrimiva |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
| 31 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 32 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) → 𝐵 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 33 |
31 32
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝐵 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐵 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 35 |
34
|
sselda |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 36 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
| 37 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝐴 <<s 𝐵 ) |
| 38 |
37 7
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 39 |
38
|
simp3d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
| 40 |
12
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 42 |
39 40 41
|
ssltsepcd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑧 ) |
| 43 |
36 42
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 <s 𝑧 ) |
| 44 |
|
rightval |
⊢ ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } |
| 45 |
44
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) |
| 46 |
45
|
eleq2d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) ) |
| 47 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ↔ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) |
| 48 |
46 47
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) ) |
| 49 |
35 43 48
|
mpbir2and |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( R ‘ 𝑋 ) ) |
| 50 |
|
rightssno |
⊢ ( R ‘ 𝑋 ) ⊆ No |
| 51 |
50 49
|
sselid |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ No ) |
| 52 |
|
slerflex |
⊢ ( 𝑧 ∈ No → 𝑧 ≤s 𝑧 ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ≤s 𝑧 ) |
| 54 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≤s 𝑧 ↔ 𝑧 ≤s 𝑧 ) ) |
| 55 |
54
|
rspcev |
⊢ ( ( 𝑧 ∈ ( R ‘ 𝑋 ) ∧ 𝑧 ≤s 𝑧 ) → ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
| 56 |
49 53 55
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
| 57 |
56
|
ralrimiva |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
| 58 |
30 57
|
jca |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) ) |