Description: If X is a timely cut of A and B , then ( _LeftX ) is cofinal with A . (Contributed by Scott Fenton, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cofcutrtimed.1 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) | |
cofcutrtimed.2 | ⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) | ||
cofcutrtimed.3 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) | ||
Assertion | cofcutrtime1d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofcutrtimed.1 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) | |
2 | cofcutrtimed.2 | ⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) | |
3 | cofcutrtimed.3 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) | |
4 | cofcutrtime | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) ) | |
5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) ) |
6 | 5 | simpld | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |