Description: If X is a timely cut of A and B , then ( _RightX ) is coinitial with B . (Contributed by Scott Fenton, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofcutrtimed.1 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) | |
| cofcutrtimed.2 | ⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) | ||
| cofcutrtimed.3 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) | ||
| Assertion | cofcutrtime2d | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcutrtimed.1 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) | |
| 2 | cofcutrtimed.2 | ⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) | |
| 3 | cofcutrtimed.3 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) | |
| 4 | cofcutrtime | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) ) |
| 6 | 5 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |