Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ) | |
coffth.g | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) | ||
Assertion | coffth | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ ( ( 𝐶 Full 𝐸 ) ∩ ( 𝐶 Faith 𝐸 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ) | |
2 | coffth.g | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) | |
3 | 1 | elin1d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Full 𝐷 ) ) |
4 | 2 | elin1d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Full 𝐸 ) ) |
5 | 3 4 | cofull | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ ( 𝐶 Full 𝐸 ) ) |
6 | 1 | elin2d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Faith 𝐷 ) ) |
7 | 2 | elin2d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Faith 𝐸 ) ) |
8 | 6 7 | cofth | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ ( 𝐶 Faith 𝐸 ) ) |
9 | 5 8 | elind | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ ( ( 𝐶 Full 𝐸 ) ∩ ( 𝐶 Faith 𝐸 ) ) ) |