| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cofipsgn.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 2 |  | cofipsgn.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 3 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 4 |  | eqid | ⊢ { 𝑝  ∈  𝑃  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  𝑃  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 5 | 3 1 4 2 | psgnfn | ⊢ 𝑆  Fn  { 𝑝  ∈  𝑃  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 6 |  | difeq1 | ⊢ ( 𝑝  =  𝑄  →  ( 𝑝  ∖   I  )  =  ( 𝑄  ∖   I  ) ) | 
						
							| 7 | 6 | dmeqd | ⊢ ( 𝑝  =  𝑄  →  dom  ( 𝑝  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑝  =  𝑄  →  ( dom  ( 𝑝  ∖   I  )  ∈  Fin  ↔  dom  ( 𝑄  ∖   I  )  ∈  Fin ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝑃 )  →  𝑄  ∈  𝑃 ) | 
						
							| 10 | 3 1 | sygbasnfpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝑃 )  →  dom  ( 𝑄  ∖   I  )  ∈  Fin ) | 
						
							| 11 | 8 9 10 | elrabd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝑃 )  →  𝑄  ∈  { 𝑝  ∈  𝑃  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 12 |  | fvco2 | ⊢ ( ( 𝑆  Fn  { 𝑝  ∈  𝑃  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ∧  𝑄  ∈  { 𝑝  ∈  𝑃  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝑄 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) | 
						
							| 13 | 5 11 12 | sylancr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝑄 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |