| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( ∪ 𝐵 = 𝐴 → ( 𝑥 ∈ ∪ 𝐵 ↔ 𝑥 ∈ 𝐴 ) ) |
| 2 |
1
|
biimprd |
⊢ ( ∪ 𝐵 = 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐵 ) ) |
| 3 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) |
| 4 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
| 5 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) |
| 6 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( Lim 𝐴 ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ On ) |
| 8 |
7
|
expr |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ On ) ) |
| 9 |
|
onelss |
⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦 ) ) |
| 10 |
8 9
|
syl6 |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦 ) ) ) |
| 11 |
10
|
reximdvai |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 12 |
3 11
|
biimtrid |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 13 |
2 12
|
syl9r |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 14 |
13
|
ralrimdv |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 15 |
|
uniss |
⊢ ( 𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴 ) |
| 16 |
15
|
3ad2ant2 |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐵 ⊆ ∪ 𝐴 ) |
| 17 |
|
uniss2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵 ) |
| 18 |
17
|
3ad2ant3 |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐴 ⊆ ∪ 𝐵 ) |
| 19 |
16 18
|
eqssd |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐵 = ∪ 𝐴 ) |
| 20 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → 𝐴 = ∪ 𝐴 ) |
| 22 |
19 21
|
eqtr4d |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐵 = 𝐴 ) |
| 23 |
22
|
3expia |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐵 = 𝐴 ) ) |
| 24 |
14 23
|
impbid |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |