| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eleq2 | 
							⊢ ( ∪  𝐵  =  𝐴  →  ( 𝑥  ∈  ∪  𝐵  ↔  𝑥  ∈  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimprd | 
							⊢ ( ∪  𝐵  =  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ∪  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 𝑥  ∈  ∪  𝐵  ↔  ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦 )  | 
						
						
							| 4 | 
							
								
							 | 
							limord | 
							⊢ ( Lim  𝐴  →  Ord  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							ordelon | 
							⊢ ( ( Ord  𝐴  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  On )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							⊢ ( ( Lim  𝐴  ∧  ( 𝐵  ⊆  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  On )  | 
						
						
							| 8 | 
							
								7
							 | 
							expr | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  On ) )  | 
						
						
							| 9 | 
							
								
							 | 
							onelss | 
							⊢ ( 𝑦  ∈  On  →  ( 𝑥  ∈  𝑦  →  𝑥  ⊆  𝑦 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl6 | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝑦  →  𝑥  ⊆  𝑦 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							reximdvai | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦  →  ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							biimtrid | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑥  ∈  ∪  𝐵  →  ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl9r | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∪  𝐵  =  𝐴  →  ( 𝑥  ∈  𝐴  →  ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimdv | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∪  𝐵  =  𝐴  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							uniss | 
							⊢ ( 𝐵  ⊆  𝐴  →  ∪  𝐵  ⊆  ∪  𝐴 )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant2 | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 )  →  ∪  𝐵  ⊆  ∪  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							uniss2 | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦  →  ∪  𝐴  ⊆  ∪  𝐵 )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant3 | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 )  →  ∪  𝐴  ⊆  ∪  𝐵 )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqssd | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 )  →  ∪  𝐵  =  ∪  𝐴 )  | 
						
						
							| 20 | 
							
								
							 | 
							limuni | 
							⊢ ( Lim  𝐴  →  𝐴  =  ∪  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant1 | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 )  →  𝐴  =  ∪  𝐴 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							eqtr4d | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 )  →  ∪  𝐵  =  𝐴 )  | 
						
						
							| 23 | 
							
								22
							 | 
							3expia | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦  →  ∪  𝐵  =  𝐴 ) )  | 
						
						
							| 24 | 
							
								14 23
							 | 
							impbid | 
							⊢ ( ( Lim  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∪  𝐵  =  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) )  |