Step |
Hyp |
Ref |
Expression |
1 |
|
coflton.1 |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
2 |
|
coflton.2 |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
3 |
|
coflton.3 |
⊢ ( 𝜑 → 𝐶 ⊆ On ) |
4 |
|
coflton.4 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
5 |
|
coflton.5 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝑧 ∈ 𝑤 ) |
6 |
|
sseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝑦 ↔ 𝑎 ⊆ 𝑦 ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ) ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
10 |
7 8 9
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ) |
11 |
10
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) → ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ) |
12 |
|
sseq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ⊆ 𝑦 ↔ 𝑎 ⊆ 𝑏 ) ) |
13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ↔ ∃ 𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏 ) |
14 |
11 13
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) → ∃ 𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏 ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
16 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑐 ∈ 𝐶 ) |
17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝑧 ∈ 𝑤 ) |
18 |
|
elequ1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) |
19 |
|
elequ2 |
⊢ ( 𝑤 = 𝑐 → ( 𝑏 ∈ 𝑤 ↔ 𝑏 ∈ 𝑐 ) ) |
20 |
18 19
|
rspc2va |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝑧 ∈ 𝑤 ) → 𝑏 ∈ 𝑐 ) |
21 |
15 16 17 20
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝑐 ) |
22 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ On ) |
23 |
22
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑎 ∈ On ) |
24 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ On ) |
25 |
24
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 ∈ On ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑐 ∈ On ) |
27 |
|
ontr2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑐 ∈ On ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ∈ 𝑐 ) → 𝑎 ∈ 𝑐 ) ) |
28 |
23 26 27
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ∈ 𝑐 ) → 𝑎 ∈ 𝑐 ) ) |
29 |
21 28
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ⊆ 𝑏 → 𝑎 ∈ 𝑐 ) ) |
30 |
29
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏 → 𝑎 ∈ 𝑐 ) ) |
31 |
14 30
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑎 ∈ 𝑐 ) |
32 |
31
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 𝑎 ∈ 𝑐 ) |