Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cofmpt.1 | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐷 ) | |
cofmpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) | ||
Assertion | cofmpt | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofmpt.1 | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐷 ) | |
2 | cofmpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) | |
3 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
4 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
5 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
6 | 2 3 4 5 | fmptco | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) |