Metamath Proof Explorer


Theorem cofmpt

Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses cofmpt.1 ( 𝜑𝐹 : 𝐶𝐷 )
cofmpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion cofmpt ( 𝜑 → ( 𝐹 ∘ ( 𝑥𝐴𝐵 ) ) = ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cofmpt.1 ( 𝜑𝐹 : 𝐶𝐷 )
2 cofmpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
3 eqidd ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 ) )
4 1 feqmptd ( 𝜑𝐹 = ( 𝑦𝐶 ↦ ( 𝐹𝑦 ) ) )
5 fveq2 ( 𝑦 = 𝐵 → ( 𝐹𝑦 ) = ( 𝐹𝐵 ) )
6 2 3 4 5 fmptco ( 𝜑 → ( 𝐹 ∘ ( 𝑥𝐴𝐵 ) ) = ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) )