Step |
Hyp |
Ref |
Expression |
1 |
|
cofmpt2.1 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝐶 = 𝐷 ) |
2 |
|
cofmpt2.2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝐸 ) |
3 |
|
cofmpt2.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
4 |
|
cofmpt2.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
5 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ 𝐸 ) |
6 |
|
fcompt |
⊢ ( ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ 𝐸 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
7 |
5 3 6
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
8 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
9 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝐶 = 𝐷 ) |
10 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝑉 ) |
12 |
8 9 10 11
|
fvmptd2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝐷 ) |
13 |
12
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) |
14 |
7 13
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) |