Step |
Hyp |
Ref |
Expression |
1 |
|
cofon1.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 On ) |
2 |
|
cofon1.2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
3 |
|
cofon1.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ) |
4 |
|
sseq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝐵 ⊆ 𝑤 ↔ 𝐵 ⊆ 𝑧 ) ) |
5 |
4
|
cbvrabv |
⊢ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } = { 𝑧 ∈ On ∣ 𝐵 ⊆ 𝑧 } |
6 |
|
sseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝑦 ↔ 𝑎 ⊆ 𝑦 ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ) ) |
8 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
9 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) |
10 |
7 8 9
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ) |
11 |
|
sseq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ⊆ 𝑦 ↔ 𝑎 ⊆ 𝑏 ) ) |
12 |
11
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑎 ⊆ 𝑦 ↔ ∃ 𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏 ) |
13 |
10 12
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏 ) |
14 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → 𝐵 ⊆ 𝑧 ) |
15 |
14
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝑧 ) |
16 |
1
|
elpwid |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
17 |
16
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ⊆ On ) |
18 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐴 ) |
19 |
17 18
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ On ) |
20 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑧 ∈ On ) |
21 |
|
ontr2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑧 ∈ On ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ∈ 𝑧 ) → 𝑎 ∈ 𝑧 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ∈ 𝑧 ) → 𝑎 ∈ 𝑧 ) ) |
23 |
15 22
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ⊆ 𝑏 → 𝑎 ∈ 𝑧 ) ) |
24 |
23
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏 → 𝑎 ∈ 𝑧 ) ) |
25 |
13 24
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ( 𝐵 ⊆ 𝑧 ∧ 𝑎 ∈ 𝐴 ) ) → 𝑎 ∈ 𝑧 ) |
26 |
25
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ 𝐵 ⊆ 𝑧 ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ 𝑧 ) ) |
27 |
26
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ 𝐵 ⊆ 𝑧 ) → 𝐴 ⊆ 𝑧 ) |
28 |
27
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝐵 ⊆ 𝑧 → 𝐴 ⊆ 𝑧 ) ) |
29 |
28
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑧 ∈ On ∣ 𝐵 ⊆ 𝑧 } ⊆ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ) |
30 |
5 29
|
eqsstrid |
⊢ ( 𝜑 → { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ⊆ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ) |
31 |
|
intss |
⊢ ( { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ⊆ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } → ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ⊆ ∩ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ⊆ ∩ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ) |
33 |
|
sseq2 |
⊢ ( 𝑤 = ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } → ( 𝐵 ⊆ 𝑤 ↔ 𝐵 ⊆ ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ) ) |
34 |
|
ssorduni |
⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) |
35 |
16 34
|
syl |
⊢ ( 𝜑 → Ord ∪ 𝐴 ) |
36 |
|
ordsuc |
⊢ ( Ord ∪ 𝐴 ↔ Ord suc ∪ 𝐴 ) |
37 |
35 36
|
sylib |
⊢ ( 𝜑 → Ord suc ∪ 𝐴 ) |
38 |
1
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐴 ∈ V ) |
39 |
|
sucexg |
⊢ ( ∪ 𝐴 ∈ V → suc ∪ 𝐴 ∈ V ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → suc ∪ 𝐴 ∈ V ) |
41 |
|
elong |
⊢ ( suc ∪ 𝐴 ∈ V → ( suc ∪ 𝐴 ∈ On ↔ Ord suc ∪ 𝐴 ) ) |
42 |
40 41
|
syl |
⊢ ( 𝜑 → ( suc ∪ 𝐴 ∈ On ↔ Ord suc ∪ 𝐴 ) ) |
43 |
37 42
|
mpbird |
⊢ ( 𝜑 → suc ∪ 𝐴 ∈ On ) |
44 |
|
onsucuni |
⊢ ( 𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴 ) |
45 |
16 44
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ suc ∪ 𝐴 ) |
46 |
|
sseq2 |
⊢ ( 𝑧 = suc ∪ 𝐴 → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ suc ∪ 𝐴 ) ) |
47 |
46
|
rspcev |
⊢ ( ( suc ∪ 𝐴 ∈ On ∧ 𝐴 ⊆ suc ∪ 𝐴 ) → ∃ 𝑧 ∈ On 𝐴 ⊆ 𝑧 ) |
48 |
43 45 47
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ On 𝐴 ⊆ 𝑧 ) |
49 |
|
onintrab2 |
⊢ ( ∃ 𝑧 ∈ On 𝐴 ⊆ 𝑧 ↔ ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ∈ On ) |
50 |
48 49
|
sylib |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ∈ On ) |
51 |
33 50 3
|
elrabd |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ∈ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ) |
52 |
|
intss1 |
⊢ ( ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ∈ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } → ∩ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ⊆ ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ∩ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ⊆ ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } ) |
54 |
32 53
|
eqssd |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧 } = ∩ { 𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤 } ) |