Step |
Hyp |
Ref |
Expression |
1 |
|
cofon2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 On ) |
2 |
|
cofon2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 On ) |
3 |
|
cofon2.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
4 |
|
cofon2.4 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
5 |
|
sseq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 ⊆ 𝑤 ↔ 𝑏 ⊆ 𝑤 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑧 = 𝑏 → ( ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
9 |
6 7 8
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) |
10 |
|
sseq2 |
⊢ ( 𝑤 = 𝑐 → ( 𝑏 ⊆ 𝑤 ↔ 𝑏 ⊆ 𝑐 ) ) |
11 |
10
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ↔ ∃ 𝑐 ∈ 𝐴 𝑏 ⊆ 𝑐 ) |
12 |
9 11
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑐 ∈ 𝐴 𝑏 ⊆ 𝑐 ) |
13 |
|
ssintub |
⊢ 𝐴 ⊆ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ⊆ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) |
15 |
14
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) |
16 |
2
|
elpwid |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → 𝐵 ⊆ On ) |
18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑏 ∈ 𝐵 ) |
19 |
17 18
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑏 ∈ On ) |
20 |
1
|
elpwid |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
21 |
|
ssorduni |
⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → Ord ∪ 𝐴 ) |
23 |
|
ordsuc |
⊢ ( Ord ∪ 𝐴 ↔ Ord suc ∪ 𝐴 ) |
24 |
22 23
|
sylib |
⊢ ( 𝜑 → Ord suc ∪ 𝐴 ) |
25 |
1
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐴 ∈ V ) |
26 |
|
sucexg |
⊢ ( ∪ 𝐴 ∈ V → suc ∪ 𝐴 ∈ V ) |
27 |
|
elong |
⊢ ( suc ∪ 𝐴 ∈ V → ( suc ∪ 𝐴 ∈ On ↔ Ord suc ∪ 𝐴 ) ) |
28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → ( suc ∪ 𝐴 ∈ On ↔ Ord suc ∪ 𝐴 ) ) |
29 |
24 28
|
mpbird |
⊢ ( 𝜑 → suc ∪ 𝐴 ∈ On ) |
30 |
|
onsucuni |
⊢ ( 𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴 ) |
31 |
20 30
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ suc ∪ 𝐴 ) |
32 |
|
sseq2 |
⊢ ( 𝑎 = suc ∪ 𝐴 → ( 𝐴 ⊆ 𝑎 ↔ 𝐴 ⊆ suc ∪ 𝐴 ) ) |
33 |
32
|
rspcev |
⊢ ( ( suc ∪ 𝐴 ∈ On ∧ 𝐴 ⊆ suc ∪ 𝐴 ) → ∃ 𝑎 ∈ On 𝐴 ⊆ 𝑎 ) |
34 |
29 31 33
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ On 𝐴 ⊆ 𝑎 ) |
35 |
|
onintrab2 |
⊢ ( ∃ 𝑎 ∈ On 𝐴 ⊆ 𝑎 ↔ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ∈ On ) |
36 |
34 35
|
sylib |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ∈ On ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ∈ On ) |
38 |
|
ontr2 |
⊢ ( ( 𝑏 ∈ On ∧ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ∈ On ) → ( ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) → 𝑏 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) ) |
39 |
19 37 38
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) → 𝑏 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) ) |
40 |
15 39
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐴 ) → ( 𝑏 ⊆ 𝑐 → 𝑏 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) ) |
41 |
40
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑐 ∈ 𝐴 𝑏 ⊆ 𝑐 → 𝑏 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) ) |
42 |
12 41
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) ) |
44 |
43
|
ssrdv |
⊢ ( 𝜑 → 𝐵 ⊆ ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } ) |
45 |
1 3 44
|
cofon1 |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎 } = ∩ { 𝑏 ∈ On ∣ 𝐵 ⊆ 𝑏 } ) |