Step |
Hyp |
Ref |
Expression |
1 |
|
cofonr.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
cofonr.2 |
⊢ ( 𝜑 → 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ) |
3 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
5 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
6 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
7 |
|
ordirr |
⊢ ( Ord 𝑦 → ¬ 𝑦 ∈ 𝑦 ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑦 ∈ 𝑦 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ) |
11 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑦 ∈ On ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑋 ⊆ 𝑦 ) |
13 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 ⊆ 𝑥 ↔ 𝑋 ⊆ 𝑦 ) ) |
14 |
13
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ↔ ( 𝑦 ∈ On ∧ 𝑋 ⊆ 𝑦 ) ) |
15 |
11 12 14
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ) |
16 |
|
intss1 |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ⊆ 𝑦 ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ⊆ 𝑦 ) |
18 |
10 17
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝐴 ⊆ 𝑦 ) |
19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
20 |
18 19
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑦 ∈ 𝑦 ) |
21 |
8 20
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑋 ⊆ 𝑦 ) |
22 |
|
dfss3 |
⊢ ( 𝑋 ⊆ 𝑦 ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ 𝑦 ) |
23 |
21 22
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ 𝑦 ) |
24 |
2 1
|
eqeltrrd |
⊢ ( 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ∈ On ) |
25 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ∈ On ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ) |
28 |
|
onss |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ On ) → 𝑥 ⊆ On ) |
30 |
|
sstr |
⊢ ( ( 𝑋 ⊆ 𝑥 ∧ 𝑥 ⊆ On ) → 𝑋 ⊆ On ) |
31 |
30
|
expcom |
⊢ ( 𝑥 ⊆ On → ( 𝑋 ⊆ 𝑥 → 𝑋 ⊆ On ) ) |
32 |
29 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ On ) → ( 𝑋 ⊆ 𝑥 → 𝑋 ⊆ On ) ) |
33 |
32
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 → 𝑋 ⊆ On ) ) |
34 |
27 33
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ⊆ On ) |
35 |
34
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ On ) |
36 |
|
ontri1 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑦 ) ) |
37 |
5 35 36
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑦 ) ) |
38 |
37
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑋 𝑦 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝑋 ¬ 𝑧 ∈ 𝑦 ) ) |
39 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝑋 ¬ 𝑧 ∈ 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ 𝑦 ) |
40 |
38 39
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑋 𝑦 ⊆ 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ 𝑦 ) ) |
41 |
23 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝑋 𝑦 ⊆ 𝑧 ) |
42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑋 𝑦 ⊆ 𝑧 ) |