| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofsmo.1 |
⊢ 𝐶 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) } |
| 2 |
|
cofsmo.2 |
⊢ 𝐾 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } |
| 3 |
|
cofsmo.3 |
⊢ 𝑂 = OrdIso ( E , 𝐶 ) |
| 4 |
1
|
ssrab3 |
⊢ 𝐶 ⊆ 𝐵 |
| 5 |
|
ssexg |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ On ) → 𝐶 ∈ V ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝐵 ∈ On → 𝐶 ∈ V ) |
| 7 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
| 8 |
4 7
|
sstrid |
⊢ ( 𝐵 ∈ On → 𝐶 ⊆ On ) |
| 9 |
|
epweon |
⊢ E We On |
| 10 |
|
wess |
⊢ ( 𝐶 ⊆ On → ( E We On → E We 𝐶 ) ) |
| 11 |
8 9 10
|
mpisyl |
⊢ ( 𝐵 ∈ On → E We 𝐶 ) |
| 12 |
3
|
oiiso |
⊢ ( ( 𝐶 ∈ V ∧ E We 𝐶 ) → 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) |
| 13 |
6 11 12
|
syl2anc |
⊢ ( 𝐵 ∈ On → 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) |
| 15 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) → 𝑂 : dom 𝑂 –1-1-onto→ 𝐶 ) |
| 16 |
|
f1ofo |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ 𝐶 → 𝑂 : dom 𝑂 –onto→ 𝐶 ) |
| 17 |
14 15 16
|
3syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 : dom 𝑂 –onto→ 𝐶 ) |
| 18 |
|
fof |
⊢ ( 𝑂 : dom 𝑂 –onto→ 𝐶 → 𝑂 : dom 𝑂 ⟶ 𝐶 ) |
| 19 |
|
fss |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 20 |
18 4 19
|
sylancl |
⊢ ( 𝑂 : dom 𝑂 –onto→ 𝐶 → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 21 |
17 20
|
syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 22 |
3
|
oion |
⊢ ( 𝐶 ∈ V → dom 𝑂 ∈ On ) |
| 23 |
6 22
|
syl |
⊢ ( 𝐵 ∈ On → dom 𝑂 ∈ On ) |
| 24 |
23
|
ad2antlr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → dom 𝑂 ∈ On ) |
| 25 |
|
simplr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝐵 ∈ On ) |
| 26 |
|
eloni |
⊢ ( dom 𝑂 ∈ On → Ord dom 𝑂 ) |
| 27 |
|
smoiso2 |
⊢ ( ( Ord dom 𝑂 ∧ 𝐶 ⊆ On ) → ( ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ Smo 𝑂 ) ↔ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) ) |
| 28 |
26 8 27
|
syl2an |
⊢ ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ Smo 𝑂 ) ↔ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) ) |
| 29 |
28
|
biimpar |
⊢ ( ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) → ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ Smo 𝑂 ) ) |
| 30 |
29
|
simprd |
⊢ ( ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) → Smo 𝑂 ) |
| 31 |
24 25 14 30
|
syl21anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Smo 𝑂 ) |
| 32 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Ord 𝐵 ) |
| 34 |
|
smocdmdom |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ Smo 𝑂 ∧ Ord 𝐵 ) → dom 𝑂 ⊆ 𝐵 ) |
| 35 |
21 31 33 34
|
syl3anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → dom 𝑂 ⊆ 𝐵 ) |
| 36 |
|
onsssuc |
⊢ ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) → ( dom 𝑂 ⊆ 𝐵 ↔ dom 𝑂 ∈ suc 𝐵 ) ) |
| 37 |
24 25 36
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( dom 𝑂 ⊆ 𝐵 ↔ dom 𝑂 ∈ suc 𝐵 ) ) |
| 38 |
35 37
|
mpbid |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → dom 𝑂 ∈ suc 𝐵 ) |
| 39 |
38
|
adantrr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → dom 𝑂 ∈ suc 𝐵 ) |
| 40 |
|
vex |
⊢ 𝑓 ∈ V |
| 41 |
3
|
oiexg |
⊢ ( 𝐶 ∈ V → 𝑂 ∈ V ) |
| 42 |
6 41
|
syl |
⊢ ( 𝐵 ∈ On → 𝑂 ∈ V ) |
| 43 |
42
|
ad2antlr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑂 ∈ V ) |
| 44 |
|
coexg |
⊢ ( ( 𝑓 ∈ V ∧ 𝑂 ∈ V ) → ( 𝑓 ∘ 𝑂 ) ∈ V ) |
| 45 |
40 43 44
|
sylancr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( 𝑓 ∘ 𝑂 ) ∈ V ) |
| 46 |
|
simprl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 47 |
21
|
adantrr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 48 |
46 47
|
fcod |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ) |
| 49 |
|
simpr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 50 |
49 21
|
fcod |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ) |
| 51 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝐴 ⊆ On ) |
| 53 |
24 26
|
syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Ord dom 𝑂 ) |
| 54 |
17 18
|
syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 : dom 𝑂 ⟶ 𝐶 ) |
| 55 |
|
simpl |
⊢ ( ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) → 𝑠 ∈ dom 𝑂 ) |
| 56 |
|
ffvelcdm |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐶 ∧ 𝑠 ∈ dom 𝑂 ) → ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 ) |
| 57 |
54 55 56
|
syl2an |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 ) |
| 58 |
|
ffn |
⊢ ( 𝑂 : dom 𝑂 ⟶ 𝐶 → 𝑂 Fn dom 𝑂 ) |
| 59 |
17 18 58
|
3syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 Fn dom 𝑂 ) |
| 60 |
59 31
|
jca |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑂 Fn dom 𝑂 ∧ Smo 𝑂 ) ) |
| 61 |
|
smoel2 |
⊢ ( ( ( 𝑂 Fn dom 𝑂 ∧ Smo 𝑂 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) ) |
| 62 |
60 61
|
sylan |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑂 ‘ 𝑠 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 64 |
63
|
eleq2d |
⊢ ( 𝑧 = ( 𝑂 ‘ 𝑠 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 65 |
64
|
raleqbi1dv |
⊢ ( 𝑧 = ( 𝑂 ‘ 𝑠 ) → ( ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 67 |
66
|
eleq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 68 |
67
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 70 |
69
|
eleq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 71 |
70
|
raleqbi1dv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 72 |
68 71
|
bitrid |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 73 |
72
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) } = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) } |
| 74 |
1 73
|
eqtri |
⊢ 𝐶 = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) } |
| 75 |
65 74
|
elrab2 |
⊢ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 ↔ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 76 |
75
|
simprbi |
⊢ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 → ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 77 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑂 ‘ 𝑡 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ) |
| 78 |
77
|
eleq1d |
⊢ ( 𝑥 = ( 𝑂 ‘ 𝑡 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ↔ ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 79 |
78
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) → ( ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) → ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 80 |
76 79
|
syl |
⊢ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 → ( ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) → ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 81 |
57 62 80
|
sylc |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 82 |
|
ordtr1 |
⊢ ( Ord dom 𝑂 → ( ( 𝑡 ∈ 𝑠 ∧ 𝑠 ∈ dom 𝑂 ) → 𝑡 ∈ dom 𝑂 ) ) |
| 83 |
82
|
ancomsd |
⊢ ( Ord dom 𝑂 → ( ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) → 𝑡 ∈ dom 𝑂 ) ) |
| 84 |
24 26 83
|
3syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) → 𝑡 ∈ dom 𝑂 ) ) |
| 85 |
84
|
imp |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → 𝑡 ∈ dom 𝑂 ) |
| 86 |
|
fvco3 |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ 𝑡 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ) |
| 87 |
21 85 86
|
syl2an2r |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ) |
| 88 |
|
simprl |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → 𝑠 ∈ dom 𝑂 ) |
| 89 |
|
fvco3 |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ 𝑠 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 90 |
21 88 89
|
syl2an2r |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 91 |
81 87 90
|
3eltr4d |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) |
| 92 |
91
|
ralrimivva |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ∀ 𝑠 ∈ dom 𝑂 ∀ 𝑡 ∈ 𝑠 ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) |
| 93 |
|
issmo2 |
⊢ ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 → ( ( 𝐴 ⊆ On ∧ Ord dom 𝑂 ∧ ∀ 𝑠 ∈ dom 𝑂 ∀ 𝑡 ∈ 𝑠 ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) → Smo ( 𝑓 ∘ 𝑂 ) ) ) |
| 94 |
93
|
imp |
⊢ ( ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ∧ ( 𝐴 ⊆ On ∧ Ord dom 𝑂 ∧ ∀ 𝑠 ∈ dom 𝑂 ∀ 𝑡 ∈ 𝑠 ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) ) → Smo ( 𝑓 ∘ 𝑂 ) ) |
| 95 |
50 52 53 92 94
|
syl13anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Smo ( 𝑓 ∘ 𝑂 ) ) |
| 96 |
95
|
adantrr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → Smo ( 𝑓 ∘ 𝑂 ) ) |
| 97 |
|
rabn0 |
⊢ ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ↔ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 98 |
|
ssrab2 |
⊢ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ 𝐵 |
| 99 |
98 7
|
sstrid |
⊢ ( 𝐵 ∈ On → { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ) |
| 100 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 101 |
100
|
sseq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 102 |
101
|
cbvrabv |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } = { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } |
| 103 |
102
|
inteqi |
⊢ ∩ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } = ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } |
| 104 |
2 103
|
eqtri |
⊢ 𝐾 = ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } |
| 105 |
|
onint |
⊢ ( ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ∧ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ) → ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 106 |
104 105
|
eqeltrid |
⊢ ( ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ∧ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ) → 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 107 |
99 106
|
sylan |
⊢ ( ( 𝐵 ∈ On ∧ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ) → 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 108 |
97 107
|
sylan2br |
⊢ ( ( 𝐵 ∈ On ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 109 |
|
fveq2 |
⊢ ( 𝑤 = 𝐾 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝐾 ) ) |
| 110 |
109
|
sseq2d |
⊢ ( 𝑤 = 𝐾 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) |
| 111 |
110
|
elrab |
⊢ ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) |
| 112 |
108 111
|
sylib |
⊢ ( ( 𝐵 ∈ On ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) |
| 113 |
112
|
ex |
⊢ ( 𝐵 ∈ On → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) ) |
| 114 |
113
|
adantl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) ) |
| 115 |
|
simpr2 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → 𝐾 ∈ 𝐵 ) |
| 116 |
|
simp3 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑤 ∈ 𝐾 ) |
| 117 |
104
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐾 ↔ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 118 |
|
simp21 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 119 |
|
simp1l |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → Ord 𝐴 ) |
| 120 |
119 51
|
syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐴 ⊆ On ) |
| 121 |
118 120
|
fssd |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑓 : 𝐵 ⟶ On ) |
| 122 |
|
simp22 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐾 ∈ 𝐵 ) |
| 123 |
121 122
|
ffvelcdmd |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑓 ‘ 𝐾 ) ∈ On ) |
| 124 |
|
simp1r |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐵 ∈ On ) |
| 125 |
|
ontr1 |
⊢ ( 𝐵 ∈ On → ( ( 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) ) |
| 126 |
125
|
3impib |
⊢ ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
| 127 |
124 116 122 126
|
syl3anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑤 ∈ 𝐵 ) |
| 128 |
121 127
|
ffvelcdmd |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑤 ) ∈ On ) |
| 129 |
|
ontri1 |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) ∈ On ∧ ( 𝑓 ‘ 𝑤 ) ∈ On ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ↔ ¬ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 130 |
123 128 129
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ↔ ¬ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 131 |
|
simp23 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) |
| 132 |
|
simpl1 |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝐵 ∈ On ) |
| 133 |
132 99
|
syl |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ) |
| 134 |
|
sstr |
⊢ ( ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 135 |
126 134
|
anim12i |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 136 |
|
rabid |
⊢ ( 𝑤 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( 𝑤 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 137 |
135 136
|
sylibr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑤 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 138 |
|
onnmin |
⊢ ( ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ∧ 𝑤 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 139 |
133 137 138
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 140 |
139
|
expr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 141 |
124 116 122 131 140
|
syl31anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 142 |
130 141
|
sylbird |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ¬ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 143 |
142
|
con4d |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 144 |
117 143
|
biimtrid |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∈ 𝐾 → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 145 |
116 144
|
mpd |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) |
| 146 |
145
|
3expia |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → ( 𝑤 ∈ 𝐾 → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 147 |
146
|
ralrimiv |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → ∀ 𝑤 ∈ 𝐾 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) |
| 148 |
|
fveq2 |
⊢ ( 𝑦 = 𝐾 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝐾 ) ) |
| 149 |
148
|
eleq2d |
⊢ ( 𝑦 = 𝐾 → ( ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 150 |
149
|
raleqbi1dv |
⊢ ( 𝑦 = 𝐾 → ( ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐾 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 151 |
150 1
|
elrab2 |
⊢ ( 𝐾 ∈ 𝐶 ↔ ( 𝐾 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐾 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 152 |
115 147 151
|
sylanbrc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → 𝐾 ∈ 𝐶 ) |
| 153 |
152
|
expcom |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → 𝐾 ∈ 𝐶 ) ) |
| 154 |
153
|
3expib |
⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → ( ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → 𝐾 ∈ 𝐶 ) ) ) |
| 155 |
154
|
com13 |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝐾 ∈ 𝐶 ) ) ) |
| 156 |
114 155
|
syld |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝐾 ∈ 𝐶 ) ) ) |
| 157 |
156
|
com23 |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝑓 : 𝐵 ⟶ 𝐴 → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → 𝐾 ∈ 𝐶 ) ) ) |
| 158 |
157
|
imp31 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝐾 ∈ 𝐶 ) |
| 159 |
|
foelrn |
⊢ ( ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ 𝐾 ∈ 𝐶 ) → ∃ 𝑣 ∈ dom 𝑂 𝐾 = ( 𝑂 ‘ 𝑣 ) ) |
| 160 |
17 158 159
|
syl2an2r |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑣 ∈ dom 𝑂 𝐾 = ( 𝑂 ‘ 𝑣 ) ) |
| 161 |
|
eleq1 |
⊢ ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 162 |
161
|
biimpcd |
⊢ ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 163 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑂 ‘ 𝑣 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) |
| 164 |
163
|
sseq2d |
⊢ ( 𝑥 = ( 𝑂 ‘ 𝑣 ) → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 165 |
66
|
sseq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
| 166 |
165
|
cbvrabv |
⊢ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } = { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } |
| 167 |
164 166
|
elrab2 |
⊢ ( ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( ( 𝑂 ‘ 𝑣 ) ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 168 |
167
|
simprbi |
⊢ ( ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) |
| 169 |
162 168
|
syl6 |
⊢ ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 170 |
108 169
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 171 |
170
|
ad5ant24 |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 172 |
21
|
ad2antrr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 173 |
|
fvco3 |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ 𝑣 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) |
| 174 |
172 173
|
sylancom |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) |
| 175 |
174
|
sseq2d |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 176 |
171 175
|
sylibrd |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 177 |
176
|
reximdva |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ∃ 𝑣 ∈ dom 𝑂 𝐾 = ( 𝑂 ‘ 𝑣 ) → ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 178 |
160 177
|
mpd |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) |
| 179 |
178
|
ex |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 180 |
179
|
ralimdv |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 181 |
180
|
impr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) |
| 182 |
48 96 181
|
3jca |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ∧ Smo ( 𝑓 ∘ 𝑂 ) ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 183 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( 𝑔 : dom 𝑂 ⟶ 𝐴 ↔ ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ) ) |
| 184 |
|
smoeq |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( Smo 𝑔 ↔ Smo ( 𝑓 ∘ 𝑂 ) ) ) |
| 185 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( 𝑔 ‘ 𝑣 ) = ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) |
| 186 |
185
|
sseq2d |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 187 |
186
|
rexbidv |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 188 |
187
|
ralbidv |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 189 |
183 184 188
|
3anbi123d |
⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ↔ ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ∧ Smo ( 𝑓 ∘ 𝑂 ) ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) ) |
| 190 |
45 182 189
|
spcedv |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∃ 𝑔 ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 191 |
|
feq2 |
⊢ ( 𝑥 = dom 𝑂 → ( 𝑔 : 𝑥 ⟶ 𝐴 ↔ 𝑔 : dom 𝑂 ⟶ 𝐴 ) ) |
| 192 |
|
rexeq |
⊢ ( 𝑥 = dom 𝑂 → ( ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 193 |
192
|
ralbidv |
⊢ ( 𝑥 = dom 𝑂 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 194 |
191 193
|
3anbi13d |
⊢ ( 𝑥 = dom 𝑂 → ( ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ↔ ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 195 |
194
|
exbidv |
⊢ ( 𝑥 = dom 𝑂 → ( ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ↔ ∃ 𝑔 ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 196 |
195
|
rspcev |
⊢ ( ( dom 𝑂 ∈ suc 𝐵 ∧ ∃ 𝑔 ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 197 |
39 190 196
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 198 |
197
|
ex |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 199 |
198
|
exlimdv |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |