| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ No ) |
| 2 |
|
cofss.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 3 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐴 ) |
| 4 |
2 1
|
sstrd |
⊢ ( 𝜑 → 𝐵 ⊆ No ) |
| 5 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ No ) |
| 6 |
|
slerflex |
⊢ ( 𝑧 ∈ No → 𝑧 ≤s 𝑧 ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ≤s 𝑧 ) |
| 8 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑧 ≤s 𝑦 ↔ 𝑧 ≤s 𝑧 ) ) |
| 9 |
8
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≤s 𝑧 ) → ∃ 𝑦 ∈ 𝐴 𝑧 ≤s 𝑦 ) |
| 10 |
3 7 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑧 ≤s 𝑦 ) |
| 11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 ≤s 𝑦 ) |
| 12 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤s 𝑦 ↔ 𝑧 ≤s 𝑦 ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ≤s 𝑦 ) ) |
| 14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 ≤s 𝑦 ) |
| 15 |
11 14
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ) |