| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) → 𝐴 ∈ 𝒫 No ) |
| 2 |
|
ssltex2 |
⊢ ( 𝐵 <<s 𝐶 → 𝐶 ∈ V ) |
| 3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) → 𝐶 ∈ V ) |
| 4 |
1
|
elpwid |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) → 𝐴 ⊆ No ) |
| 5 |
|
ssltss2 |
⊢ ( 𝐵 <<s 𝐶 → 𝐶 ⊆ No ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) → 𝐶 ⊆ No ) |
| 7 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ≤s 𝑦 ↔ 𝑎 ≤s 𝑦 ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 𝑎 ≤s 𝑦 ) ) |
| 9 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ) |
| 10 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) → 𝑎 ∈ 𝐴 ) |
| 11 |
8 9 10
|
rspcdva |
⊢ ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐵 𝑎 ≤s 𝑦 ) |
| 12 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ≤s 𝑦 ↔ 𝑎 ≤s 𝑏 ) ) |
| 13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑎 ≤s 𝑦 ↔ ∃ 𝑏 ∈ 𝐵 𝑎 ≤s 𝑏 ) |
| 14 |
11 13
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) → ∃ 𝑏 ∈ 𝐵 𝑎 ≤s 𝑏 ) |
| 15 |
|
simpl11 |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝐴 ∈ 𝒫 No ) |
| 16 |
15
|
elpwid |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝐴 ⊆ No ) |
| 17 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑎 ∈ 𝐴 ) |
| 18 |
16 17
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑎 ∈ No ) |
| 19 |
|
simpl13 |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝐵 <<s 𝐶 ) |
| 20 |
|
ssltss1 |
⊢ ( 𝐵 <<s 𝐶 → 𝐵 ⊆ No ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝐵 ⊆ No ) |
| 22 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑏 ∈ 𝐵 ) |
| 23 |
21 22
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑏 ∈ No ) |
| 24 |
19 5
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝐶 ⊆ No ) |
| 25 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑐 ∈ 𝐶 ) |
| 26 |
24 25
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑐 ∈ No ) |
| 27 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑎 ≤s 𝑏 ) |
| 28 |
19 22 25
|
ssltsepcd |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑏 <s 𝑐 ) |
| 29 |
18 23 26 27 28
|
slelttrd |
⊢ ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ≤s 𝑏 ) ) → 𝑎 <s 𝑐 ) |
| 30 |
14 29
|
rexlimddv |
⊢ ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐶 ) → 𝑎 <s 𝑐 ) |
| 31 |
1 3 4 6 30
|
ssltd |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 ) |