Step |
Hyp |
Ref |
Expression |
1 |
|
coftr.1 |
⊢ 𝐻 = ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
2 |
|
fdm |
⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → dom 𝑔 = 𝐶 ) |
3 |
|
vex |
⊢ 𝑔 ∈ V |
4 |
3
|
dmex |
⊢ dom 𝑔 ∈ V |
5 |
2 4
|
eqeltrrdi |
⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → 𝐶 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 𝑤 ) ) |
7 |
6
|
sseq1d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝑡 = 𝑤 → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } = { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
9 |
8
|
inteqd |
⊢ ( 𝑡 = 𝑤 → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } = ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
10 |
9
|
cbvmptv |
⊢ ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) = ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
11 |
1 10
|
eqtri |
⊢ 𝐻 = ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
12 |
|
mptexg |
⊢ ( 𝐶 ∈ V → ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) ∈ V ) |
13 |
11 12
|
eqeltrid |
⊢ ( 𝐶 ∈ V → 𝐻 ∈ V ) |
14 |
5 13
|
syl |
⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → 𝐻 ∈ V ) |
15 |
14
|
ad2antrl |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝐻 ∈ V ) |
16 |
|
ffn |
⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝑓 Fn 𝐵 ) |
17 |
|
smodm2 |
⊢ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) → Ord 𝐵 ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → Ord 𝐵 ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → Ord 𝐵 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → Ord 𝐵 ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) |
22 |
|
simprl |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑔 : 𝐶 ⟶ 𝐴 ) |
23 |
|
simpl1 |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → Ord 𝐵 ) |
24 |
|
simpl2 |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) |
25 |
|
ffvelrn |
⊢ ( ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ 𝑤 ∈ 𝐶 ) → ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 ) |
26 |
25
|
3ad2antl3 |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 ) |
27 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑤 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑤 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
29 |
28
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
30 |
24 26 29
|
sylc |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) |
31 |
|
ssrab2 |
⊢ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝐵 |
32 |
|
ordsson |
⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) |
33 |
31 32
|
sstrid |
⊢ ( Ord 𝐵 → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ On ) |
34 |
|
fveq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑦 ) ) |
35 |
34
|
sseq2d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
36 |
35
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑛 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) |
37 |
|
rabn0 |
⊢ ( { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ) |
39 |
|
oninton |
⊢ ( ( { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ On ∧ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On ) |
40 |
33 38 39
|
syl2an |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On ) |
41 |
|
eloni |
⊢ ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On → Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
42 |
40 41
|
syl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
43 |
|
simpl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → Ord 𝐵 ) |
44 |
35
|
intminss |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ) |
45 |
44
|
adantl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ) |
46 |
|
simprl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
47 |
|
ordtr2 |
⊢ ( ( Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∧ Ord 𝐵 ) → ( ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
48 |
47
|
imp |
⊢ ( ( ( Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∧ Ord 𝐵 ) ∧ ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
49 |
42 43 45 46 48
|
syl22anc |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
50 |
49
|
rexlimdvaa |
⊢ ( Ord 𝐵 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
51 |
23 30 50
|
sylc |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
52 |
51 11
|
fmptd |
⊢ ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) → 𝐻 : 𝐶 ⟶ 𝐵 ) |
53 |
20 21 22 52
|
syl3anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝐻 : 𝐶 ⟶ 𝐵 ) |
54 |
|
simprr |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) |
55 |
|
simpl1 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
56 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑠 ) ∈ 𝐴 ) |
57 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑠 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑠 ) → ( ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
59 |
58
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑓 ‘ 𝑠 ) ∈ 𝐴 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
60 |
56 59
|
syl5 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑠 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
61 |
60
|
expdimp |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
62 |
54 55 61
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
63 |
55 16
|
syl |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑓 Fn 𝐵 ) |
64 |
|
simpl2 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → Smo 𝑓 ) |
65 |
|
simpr |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ∈ 𝐶 ) |
66 |
65 51
|
jca |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
67 |
35
|
elrab |
⊢ ( 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
68 |
|
sstr2 |
⊢ ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
69 |
|
smoword |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑠 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
70 |
69
|
biimprd |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) |
71 |
68 70
|
syl9r |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) |
72 |
71
|
expr |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) ) |
73 |
72
|
com23 |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) ) |
74 |
73
|
imp4b |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → 𝑠 ⊆ 𝑦 ) ) |
75 |
67 74
|
syl5bi |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } → 𝑠 ⊆ 𝑦 ) ) |
76 |
75
|
ralrimiv |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∀ 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } 𝑠 ⊆ 𝑦 ) |
77 |
|
ssint |
⊢ ( 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ↔ ∀ 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } 𝑠 ⊆ 𝑦 ) |
78 |
76 77
|
sylibr |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
79 |
9 1
|
fvmptg |
⊢ ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → ( 𝐻 ‘ 𝑤 ) = ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
80 |
79
|
sseq2d |
⊢ ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → ( 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ↔ 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) ) |
81 |
78 80
|
syl5ibrcom |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
82 |
66 81
|
syl5 |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
83 |
82
|
ex |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
84 |
83
|
com23 |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
85 |
84
|
expdimp |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ) → ( 𝑤 ∈ 𝐶 → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
86 |
85
|
reximdvai |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ) → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
87 |
86
|
ancoms |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
88 |
87
|
expr |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ) → ( 𝑠 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
89 |
20 21 22 63 64 88
|
syl32anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
90 |
62 89
|
mpdd |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
91 |
90
|
ralrimiv |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) |
92 |
|
feq1 |
⊢ ( ℎ = 𝐻 → ( ℎ : 𝐶 ⟶ 𝐵 ↔ 𝐻 : 𝐶 ⟶ 𝐵 ) ) |
93 |
|
fveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) |
94 |
93
|
sseq2d |
⊢ ( ℎ = 𝐻 → ( 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
95 |
94
|
rexbidv |
⊢ ( ℎ = 𝐻 → ( ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
96 |
95
|
ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
97 |
92 96
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ↔ ( 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
98 |
97
|
spcegv |
⊢ ( 𝐻 ∈ V → ( ( 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
99 |
98
|
3impib |
⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) |
100 |
15 53 91 99
|
syl3anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) |
101 |
100
|
ex |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
102 |
101
|
exlimdv |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
103 |
102
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |