| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coftr.1 |
⊢ 𝐻 = ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 2 |
|
fdm |
⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → dom 𝑔 = 𝐶 ) |
| 3 |
|
vex |
⊢ 𝑔 ∈ V |
| 4 |
3
|
dmex |
⊢ dom 𝑔 ∈ V |
| 5 |
2 4
|
eqeltrrdi |
⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → 𝐶 ∈ V ) |
| 6 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 𝑤 ) ) |
| 7 |
6
|
sseq1d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) ) |
| 8 |
7
|
rabbidv |
⊢ ( 𝑡 = 𝑤 → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } = { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 9 |
8
|
inteqd |
⊢ ( 𝑡 = 𝑤 → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } = ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 10 |
9
|
cbvmptv |
⊢ ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) = ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 11 |
1 10
|
eqtri |
⊢ 𝐻 = ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 12 |
|
mptexg |
⊢ ( 𝐶 ∈ V → ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) ∈ V ) |
| 13 |
11 12
|
eqeltrid |
⊢ ( 𝐶 ∈ V → 𝐻 ∈ V ) |
| 14 |
5 13
|
syl |
⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → 𝐻 ∈ V ) |
| 15 |
14
|
ad2antrl |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝐻 ∈ V ) |
| 16 |
|
ffn |
⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝑓 Fn 𝐵 ) |
| 17 |
|
smodm2 |
⊢ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) → Ord 𝐵 ) |
| 18 |
16 17
|
sylan |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → Ord 𝐵 ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → Ord 𝐵 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → Ord 𝐵 ) |
| 21 |
|
simpl3 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) |
| 22 |
|
simprl |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑔 : 𝐶 ⟶ 𝐴 ) |
| 23 |
|
simpl1 |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → Ord 𝐵 ) |
| 24 |
|
simpl2 |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) |
| 25 |
|
ffvelcdm |
⊢ ( ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ 𝑤 ∈ 𝐶 ) → ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 ) |
| 26 |
25
|
3ad2antl3 |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 ) |
| 27 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑤 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑤 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 29 |
28
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 30 |
24 26 29
|
sylc |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) |
| 31 |
|
ssrab2 |
⊢ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝐵 |
| 32 |
|
ordsson |
⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) |
| 33 |
31 32
|
sstrid |
⊢ ( Ord 𝐵 → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ On ) |
| 34 |
|
fveq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 35 |
34
|
sseq2d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 36 |
35
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑛 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) |
| 37 |
|
rabn0 |
⊢ ( { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ) |
| 39 |
|
oninton |
⊢ ( ( { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ On ∧ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On ) |
| 40 |
33 38 39
|
syl2an |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On ) |
| 41 |
|
eloni |
⊢ ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On → Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 42 |
40 41
|
syl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 43 |
|
simpl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → Ord 𝐵 ) |
| 44 |
35
|
intminss |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ) |
| 45 |
44
|
adantl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ) |
| 46 |
|
simprl |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 47 |
|
ordtr2 |
⊢ ( ( Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∧ Ord 𝐵 ) → ( ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
| 48 |
47
|
imp |
⊢ ( ( ( Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∧ Ord 𝐵 ) ∧ ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
| 49 |
42 43 45 46 48
|
syl22anc |
⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
| 50 |
49
|
rexlimdvaa |
⊢ ( Ord 𝐵 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
| 51 |
23 30 50
|
sylc |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
| 52 |
51 11
|
fmptd |
⊢ ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) → 𝐻 : 𝐶 ⟶ 𝐵 ) |
| 53 |
20 21 22 52
|
syl3anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝐻 : 𝐶 ⟶ 𝐵 ) |
| 54 |
|
simprr |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) |
| 55 |
|
simpl1 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 56 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑠 ) ∈ 𝐴 ) |
| 57 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑠 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 58 |
57
|
rexbidv |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑠 ) → ( ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 59 |
58
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑓 ‘ 𝑠 ) ∈ 𝐴 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 60 |
56 59
|
syl5 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑠 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 61 |
60
|
expdimp |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 62 |
54 55 61
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 63 |
55 16
|
syl |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑓 Fn 𝐵 ) |
| 64 |
|
simpl2 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → Smo 𝑓 ) |
| 65 |
|
simpr |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ∈ 𝐶 ) |
| 66 |
65 51
|
jca |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
| 67 |
35
|
elrab |
⊢ ( 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 68 |
|
sstr2 |
⊢ ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 69 |
|
smoword |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑠 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 70 |
69
|
biimprd |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) |
| 71 |
68 70
|
syl9r |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) |
| 72 |
71
|
expr |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) ) |
| 73 |
72
|
com23 |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) ) |
| 74 |
73
|
imp4b |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → 𝑠 ⊆ 𝑦 ) ) |
| 75 |
67 74
|
biimtrid |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } → 𝑠 ⊆ 𝑦 ) ) |
| 76 |
75
|
ralrimiv |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∀ 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } 𝑠 ⊆ 𝑦 ) |
| 77 |
|
ssint |
⊢ ( 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ↔ ∀ 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } 𝑠 ⊆ 𝑦 ) |
| 78 |
76 77
|
sylibr |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 79 |
9 1
|
fvmptg |
⊢ ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → ( 𝐻 ‘ 𝑤 ) = ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 80 |
79
|
sseq2d |
⊢ ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → ( 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ↔ 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) ) |
| 81 |
78 80
|
syl5ibrcom |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 82 |
66 81
|
syl5 |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 83 |
82
|
ex |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 84 |
83
|
com23 |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 85 |
84
|
expdimp |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ) → ( 𝑤 ∈ 𝐶 → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 86 |
85
|
reximdvai |
⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ) → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 87 |
86
|
ancoms |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 88 |
87
|
expr |
⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ) → ( 𝑠 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 89 |
20 21 22 63 64 88
|
syl32anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 90 |
62 89
|
mpdd |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 91 |
90
|
ralrimiv |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) |
| 92 |
|
feq1 |
⊢ ( ℎ = 𝐻 → ( ℎ : 𝐶 ⟶ 𝐵 ↔ 𝐻 : 𝐶 ⟶ 𝐵 ) ) |
| 93 |
|
fveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) |
| 94 |
93
|
sseq2d |
⊢ ( ℎ = 𝐻 → ( 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 95 |
94
|
rexbidv |
⊢ ( ℎ = 𝐻 → ( ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 96 |
95
|
ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 97 |
92 96
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ↔ ( 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 98 |
97
|
spcegv |
⊢ ( 𝐻 ∈ V → ( ( 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| 99 |
98
|
3impib |
⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) |
| 100 |
15 53 91 99
|
syl3anc |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) |
| 101 |
100
|
ex |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| 102 |
101
|
exlimdv |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| 103 |
102
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |