Step |
Hyp |
Ref |
Expression |
1 |
|
cofuval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
cofuval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
3 |
|
cofuval.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) |
4 |
|
cofu2nd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
cofu2nd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
1 2 3
|
cofuval |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) = 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ∘func 𝐹 ) ) = ( 2nd ‘ 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ) ) |
8 |
|
fvex |
⊢ ( 1st ‘ 𝐺 ) ∈ V |
9 |
|
fvex |
⊢ ( 1st ‘ 𝐹 ) ∈ V |
10 |
8 9
|
coex |
⊢ ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) ∈ V |
11 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
12 |
11 11
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) ∈ V |
13 |
10 12
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) |
14 |
7 13
|
eqtrdi |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ∘func 𝐹 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) |
19 |
16 18
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) ) |
20 |
15 17
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) = ( 𝑋 ( 2nd ‘ 𝐹 ) 𝑌 ) ) |
21 |
19 20
|
coeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) = ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) ∘ ( 𝑋 ( 2nd ‘ 𝐹 ) 𝑌 ) ) ) |
22 |
|
ovex |
⊢ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) ∈ V |
23 |
|
ovex |
⊢ ( 𝑋 ( 2nd ‘ 𝐹 ) 𝑌 ) ∈ V |
24 |
22 23
|
coex |
⊢ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) ∘ ( 𝑋 ( 2nd ‘ 𝐹 ) 𝑌 ) ) ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) ∘ ( 𝑋 ( 2nd ‘ 𝐹 ) 𝑌 ) ) ∈ V ) |
26 |
14 21 4 5 25
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 𝐺 ∘func 𝐹 ) ) 𝑌 ) = ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑋 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑌 ) ) ∘ ( 𝑋 ( 2nd ‘ 𝐹 ) 𝑌 ) ) ) |