Metamath Proof Explorer


Theorem cofull

Description: The composition of two full functors is full. Proposition 3.30(d) in Adamek p. 35. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses cofull.f ( 𝜑𝐹 ∈ ( 𝐶 Full 𝐷 ) )
cofull.g ( 𝜑𝐺 ∈ ( 𝐷 Full 𝐸 ) )
Assertion cofull ( 𝜑 → ( 𝐺func 𝐹 ) ∈ ( 𝐶 Full 𝐸 ) )

Proof

Step Hyp Ref Expression
1 cofull.f ( 𝜑𝐹 ∈ ( 𝐶 Full 𝐷 ) )
2 cofull.g ( 𝜑𝐺 ∈ ( 𝐷 Full 𝐸 ) )
3 relfunc Rel ( 𝐶 Func 𝐸 )
4 fullfunc ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 )
5 4 1 sselid ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
6 fullfunc ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 )
7 6 2 sselid ( 𝜑𝐺 ∈ ( 𝐷 Func 𝐸 ) )
8 5 7 cofucl ( 𝜑 → ( 𝐺func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) )
9 1st2nd ( ( Rel ( 𝐶 Func 𝐸 ) ∧ ( 𝐺func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) ) → ( 𝐺func 𝐹 ) = ⟨ ( 1st ‘ ( 𝐺func 𝐹 ) ) , ( 2nd ‘ ( 𝐺func 𝐹 ) ) ⟩ )
10 3 8 9 sylancr ( 𝜑 → ( 𝐺func 𝐹 ) = ⟨ ( 1st ‘ ( 𝐺func 𝐹 ) ) , ( 2nd ‘ ( 𝐺func 𝐹 ) ) ⟩ )
11 1st2ndbr ( ( Rel ( 𝐶 Func 𝐸 ) ∧ ( 𝐺func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) ) → ( 1st ‘ ( 𝐺func 𝐹 ) ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ ( 𝐺func 𝐹 ) ) )
12 3 8 11 sylancr ( 𝜑 → ( 1st ‘ ( 𝐺func 𝐹 ) ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ ( 𝐺func 𝐹 ) ) )
13 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
14 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
15 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
16 relfull Rel ( 𝐷 Full 𝐸 )
17 2 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐺 ∈ ( 𝐷 Full 𝐸 ) )
18 1st2ndbr ( ( Rel ( 𝐷 Full 𝐸 ) ∧ 𝐺 ∈ ( 𝐷 Full 𝐸 ) ) → ( 1st𝐺 ) ( 𝐷 Full 𝐸 ) ( 2nd𝐺 ) )
19 16 17 18 sylancr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝐺 ) ( 𝐷 Full 𝐸 ) ( 2nd𝐺 ) )
20 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
21 relfunc Rel ( 𝐶 Func 𝐷 )
22 5 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
23 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
24 21 22 23 sylancr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
25 20 13 24 funcf1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
26 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
27 25 26 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
28 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
29 25 28 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) )
30 13 14 15 19 27 29 fullfo ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) : ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) –onto→ ( ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
31 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
32 relfull Rel ( 𝐶 Full 𝐷 )
33 1 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ∈ ( 𝐶 Full 𝐷 ) )
34 1st2ndbr ( ( Rel ( 𝐶 Full 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Full 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Full 𝐷 ) ( 2nd𝐹 ) )
35 32 33 34 sylancr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝐹 ) ( 𝐶 Full 𝐷 ) ( 2nd𝐹 ) )
36 20 15 31 35 26 28 fullfo ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
37 foco ( ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) : ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) –onto→ ( ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ∧ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) → ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
38 30 36 37 syl2anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
39 7 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐺 ∈ ( 𝐷 Func 𝐸 ) )
40 20 22 39 26 28 cofu2nd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐹 ) ) 𝑦 ) = ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) )
41 eqidd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
42 20 22 39 26 cofu1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑥 ) = ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
43 20 22 39 28 cofu1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑦 ) = ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
44 42 43 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑦 ) ) = ( ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
45 40 41 44 foeq123d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐹 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑦 ) ) ↔ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ) )
46 38 45 mpbird ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐹 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑦 ) ) )
47 46 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐹 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑦 ) ) )
48 20 14 31 isfull2 ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ( 𝐶 Full 𝐸 ) ( 2nd ‘ ( 𝐺func 𝐹 ) ) ↔ ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ ( 𝐺func 𝐹 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐹 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –onto→ ( ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ‘ 𝑦 ) ) ) )
49 12 47 48 sylanbrc ( 𝜑 → ( 1st ‘ ( 𝐺func 𝐹 ) ) ( 𝐶 Full 𝐸 ) ( 2nd ‘ ( 𝐺func 𝐹 ) ) )
50 df-br ( ( 1st ‘ ( 𝐺func 𝐹 ) ) ( 𝐶 Full 𝐸 ) ( 2nd ‘ ( 𝐺func 𝐹 ) ) ↔ ⟨ ( 1st ‘ ( 𝐺func 𝐹 ) ) , ( 2nd ‘ ( 𝐺func 𝐹 ) ) ⟩ ∈ ( 𝐶 Full 𝐸 ) )
51 49 50 sylib ( 𝜑 → ⟨ ( 1st ‘ ( 𝐺func 𝐹 ) ) , ( 2nd ‘ ( 𝐺func 𝐹 ) ) ⟩ ∈ ( 𝐶 Full 𝐸 ) )
52 10 51 eqeltrd ( 𝜑 → ( 𝐺func 𝐹 ) ∈ ( 𝐶 Full 𝐸 ) )