Metamath Proof Explorer


Theorem cofunex2g

Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007)

Ref Expression
Assertion cofunex2g ( ( 𝐴𝑉 ∧ Fun 𝐵 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 cnvexg ( 𝐴𝑉 𝐴 ∈ V )
2 cofunexg ( ( Fun 𝐵 𝐴 ∈ V ) → ( 𝐵 𝐴 ) ∈ V )
3 1 2 sylan2 ( ( Fun 𝐵𝐴𝑉 ) → ( 𝐵 𝐴 ) ∈ V )
4 cnvco ( 𝐵 𝐴 ) = ( 𝐴 𝐵 )
5 cocnvcnv2 ( 𝐴 𝐵 ) = ( 𝐴𝐵 )
6 cocnvcnv1 ( 𝐴𝐵 ) = ( 𝐴𝐵 )
7 4 5 6 3eqtrri ( 𝐴𝐵 ) = ( 𝐵 𝐴 )
8 cnvexg ( ( 𝐵 𝐴 ) ∈ V → ( 𝐵 𝐴 ) ∈ V )
9 7 8 eqeltrid ( ( 𝐵 𝐴 ) ∈ V → ( 𝐴𝐵 ) ∈ V )
10 3 9 syl ( ( Fun 𝐵𝐴𝑉 ) → ( 𝐴𝐵 ) ∈ V )
11 10 ancoms ( ( 𝐴𝑉 ∧ Fun 𝐵 ) → ( 𝐴𝐵 ) ∈ V )