Step |
Hyp |
Ref |
Expression |
1 |
|
cnvexg |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) |
2 |
|
cofunexg |
⊢ ( ( Fun ◡ 𝐵 ∧ ◡ 𝐴 ∈ V ) → ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V ) |
3 |
1 2
|
sylan2 |
⊢ ( ( Fun ◡ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V ) |
4 |
|
cnvco |
⊢ ◡ ( ◡ 𝐵 ∘ ◡ 𝐴 ) = ( ◡ ◡ 𝐴 ∘ ◡ ◡ 𝐵 ) |
5 |
|
cocnvcnv2 |
⊢ ( ◡ ◡ 𝐴 ∘ ◡ ◡ 𝐵 ) = ( ◡ ◡ 𝐴 ∘ 𝐵 ) |
6 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ 𝐴 ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) |
7 |
4 5 6
|
3eqtrri |
⊢ ( 𝐴 ∘ 𝐵 ) = ◡ ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
8 |
|
cnvexg |
⊢ ( ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V → ◡ ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V ) |
9 |
7 8
|
eqeltrid |
⊢ ( ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
10 |
3 9
|
syl |
⊢ ( ( Fun ◡ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Fun ◡ 𝐵 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |