| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relco | ⊢ Rel  ( 𝐴  ∘  𝐵 ) | 
						
							| 2 |  | relssdmrn | ⊢ ( Rel  ( 𝐴  ∘  𝐵 )  →  ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) ) | 
						
							| 4 |  | dmcoss | ⊢ dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵 | 
						
							| 5 |  | dmexg | ⊢ ( 𝐵  ∈  𝐶  →  dom  𝐵  ∈  V ) | 
						
							| 6 |  | ssexg | ⊢ ( ( dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵  ∧  dom  𝐵  ∈  V )  →  dom  ( 𝐴  ∘  𝐵 )  ∈  V ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝐵  ∈  𝐶  →  dom  ( 𝐴  ∘  𝐵 )  ∈  V ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  dom  ( 𝐴  ∘  𝐵 )  ∈  V ) | 
						
							| 9 |  | rnco | ⊢ ran  ( 𝐴  ∘  𝐵 )  =  ran  ( 𝐴  ↾  ran  𝐵 ) | 
						
							| 10 |  | rnexg | ⊢ ( 𝐵  ∈  𝐶  →  ran  𝐵  ∈  V ) | 
						
							| 11 |  | resfunexg | ⊢ ( ( Fun  𝐴  ∧  ran  𝐵  ∈  V )  →  ( 𝐴  ↾  ran  𝐵 )  ∈  V ) | 
						
							| 12 | 10 11 | sylan2 | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  ran  𝐵 )  ∈  V ) | 
						
							| 13 |  | rnexg | ⊢ ( ( 𝐴  ↾  ran  𝐵 )  ∈  V  →  ran  ( 𝐴  ↾  ran  𝐵 )  ∈  V ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ran  ( 𝐴  ↾  ran  𝐵 )  ∈  V ) | 
						
							| 15 | 9 14 | eqeltrid | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ran  ( 𝐴  ∘  𝐵 )  ∈  V ) | 
						
							| 16 | 8 15 | xpexd | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∈  V ) | 
						
							| 17 |  | ssexg | ⊢ ( ( ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∧  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∈  V )  →  ( 𝐴  ∘  𝐵 )  ∈  V ) | 
						
							| 18 | 3 16 17 | sylancr | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∘  𝐵 )  ∈  V ) |