Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
⊢ Rel ( 𝐴 ∘ 𝐵 ) |
2 |
|
relssdmrn |
⊢ ( Rel ( 𝐴 ∘ 𝐵 ) → ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) |
4 |
|
dmcoss |
⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 |
5 |
|
dmexg |
⊢ ( 𝐵 ∈ 𝐶 → dom 𝐵 ∈ V ) |
6 |
|
ssexg |
⊢ ( ( dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V ) → dom ( 𝐴 ∘ 𝐵 ) ∈ V ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝐵 ∈ 𝐶 → dom ( 𝐴 ∘ 𝐵 ) ∈ V ) |
8 |
7
|
adantl |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → dom ( 𝐴 ∘ 𝐵 ) ∈ V ) |
9 |
|
rnco |
⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |
10 |
|
rnexg |
⊢ ( 𝐵 ∈ 𝐶 → ran 𝐵 ∈ V ) |
11 |
|
resfunexg |
⊢ ( ( Fun 𝐴 ∧ ran 𝐵 ∈ V ) → ( 𝐴 ↾ ran 𝐵 ) ∈ V ) |
12 |
10 11
|
sylan2 |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ ran 𝐵 ) ∈ V ) |
13 |
|
rnexg |
⊢ ( ( 𝐴 ↾ ran 𝐵 ) ∈ V → ran ( 𝐴 ↾ ran 𝐵 ) ∈ V ) |
14 |
12 13
|
syl |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ran ( 𝐴 ↾ ran 𝐵 ) ∈ V ) |
15 |
9 14
|
eqeltrid |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ran ( 𝐴 ∘ 𝐵 ) ∈ V ) |
16 |
8 15
|
xpexd |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∈ V ) |
17 |
|
ssexg |
⊢ ( ( ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∧ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∈ V ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
18 |
3 16 17
|
sylancr |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |