Metamath Proof Explorer


Theorem cofunexg

Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007)

Ref Expression
Assertion cofunexg ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 relco Rel ( 𝐴𝐵 )
2 relssdmrn ( Rel ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ⊆ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) )
3 1 2 ax-mp ( 𝐴𝐵 ) ⊆ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) )
4 dmcoss dom ( 𝐴𝐵 ) ⊆ dom 𝐵
5 dmexg ( 𝐵𝐶 → dom 𝐵 ∈ V )
6 ssexg ( ( dom ( 𝐴𝐵 ) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V ) → dom ( 𝐴𝐵 ) ∈ V )
7 4 5 6 sylancr ( 𝐵𝐶 → dom ( 𝐴𝐵 ) ∈ V )
8 7 adantl ( ( Fun 𝐴𝐵𝐶 ) → dom ( 𝐴𝐵 ) ∈ V )
9 rnco ran ( 𝐴𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 )
10 rnexg ( 𝐵𝐶 → ran 𝐵 ∈ V )
11 resfunexg ( ( Fun 𝐴 ∧ ran 𝐵 ∈ V ) → ( 𝐴 ↾ ran 𝐵 ) ∈ V )
12 10 11 sylan2 ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴 ↾ ran 𝐵 ) ∈ V )
13 rnexg ( ( 𝐴 ↾ ran 𝐵 ) ∈ V → ran ( 𝐴 ↾ ran 𝐵 ) ∈ V )
14 12 13 syl ( ( Fun 𝐴𝐵𝐶 ) → ran ( 𝐴 ↾ ran 𝐵 ) ∈ V )
15 9 14 eqeltrid ( ( Fun 𝐴𝐵𝐶 ) → ran ( 𝐴𝐵 ) ∈ V )
16 8 15 xpexd ( ( Fun 𝐴𝐵𝐶 ) → ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∈ V )
17 ssexg ( ( ( 𝐴𝐵 ) ⊆ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∧ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∈ V ) → ( 𝐴𝐵 ) ∈ V )
18 3 16 17 sylancr ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )