Step |
Hyp |
Ref |
Expression |
1 |
|
cofuval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
cofuval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
3 |
|
cofuval.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) |
4 |
|
df-cofu |
⊢ ∘func = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ 〈 ( ( 1st ‘ 𝑔 ) ∘ ( 1st ‘ 𝑓 ) ) , ( 𝑥 ∈ dom dom ( 2nd ‘ 𝑓 ) , 𝑦 ∈ dom dom ( 2nd ‘ 𝑓 ) ↦ ( ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( 2nd ‘ 𝑔 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ) ) 〉 ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ∘func = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ 〈 ( ( 1st ‘ 𝑔 ) ∘ ( 1st ‘ 𝑓 ) ) , ( 𝑥 ∈ dom dom ( 2nd ‘ 𝑓 ) , 𝑦 ∈ dom dom ( 2nd ‘ 𝑓 ) ↦ ( ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( 2nd ‘ 𝑔 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ) ) 〉 ) ) |
6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 𝑔 = 𝐺 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑔 ) = ( 1st ‘ 𝐺 ) ) |
8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑓 ) = ( 1st ‘ 𝐹 ) ) |
10 |
7 9
|
coeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( ( 1st ‘ 𝑔 ) ∘ ( 1st ‘ 𝑓 ) ) = ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) ) |
11 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 2nd ‘ 𝑓 ) = ( 2nd ‘ 𝐹 ) ) |
12 |
11
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom ( 2nd ‘ 𝑓 ) = dom ( 2nd ‘ 𝐹 ) ) |
13 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
14 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
15 |
13 2 14
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
16 |
1 15
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) Fn ( 𝐵 × 𝐵 ) ) |
17 |
16
|
fndmd |
⊢ ( 𝜑 → dom ( 2nd ‘ 𝐹 ) = ( 𝐵 × 𝐵 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom ( 2nd ‘ 𝐹 ) = ( 𝐵 × 𝐵 ) ) |
19 |
12 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom ( 2nd ‘ 𝑓 ) = ( 𝐵 × 𝐵 ) ) |
20 |
19
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom dom ( 2nd ‘ 𝑓 ) = dom ( 𝐵 × 𝐵 ) ) |
21 |
|
dmxpid |
⊢ dom ( 𝐵 × 𝐵 ) = 𝐵 |
22 |
20 21
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom dom ( 2nd ‘ 𝑓 ) = 𝐵 ) |
23 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 2nd ‘ 𝑔 ) = ( 2nd ‘ 𝐺 ) ) |
24 |
9
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) |
25 |
9
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) |
26 |
23 24 25
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( 2nd ‘ 𝑔 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
27 |
11
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) = ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) |
28 |
26 27
|
coeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( 2nd ‘ 𝑔 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ) = ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) |
29 |
22 22 28
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 ∈ dom dom ( 2nd ‘ 𝑓 ) , 𝑦 ∈ dom dom ( 2nd ‘ 𝑓 ) ↦ ( ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( 2nd ‘ 𝑔 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) ) |
30 |
10 29
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 〈 ( ( 1st ‘ 𝑔 ) ∘ ( 1st ‘ 𝑓 ) ) , ( 𝑥 ∈ dom dom ( 2nd ‘ 𝑓 ) , 𝑦 ∈ dom dom ( 2nd ‘ 𝑓 ) ↦ ( ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( 2nd ‘ 𝑔 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ) ) 〉 = 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ) |
31 |
3
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
32 |
2
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
33 |
|
opex |
⊢ 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ∈ V ) |
35 |
5 30 31 32 34
|
ovmpod |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) = 〈 ( ( 1st ‘ 𝐺 ) ∘ ( 1st ‘ 𝐹 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ) ) 〉 ) |