Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
⊢ Rel ( 𝐴 ∘ I ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
2 3
|
opelco |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ I ) ↔ ∃ 𝑧 ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
5 |
|
vex |
⊢ 𝑧 ∈ V |
6 |
5
|
ideq |
⊢ ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) |
7 |
|
equcom |
⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) |
8 |
6 7
|
bitri |
⊢ ( 𝑥 I 𝑧 ↔ 𝑧 = 𝑥 ) |
9 |
8
|
anbi1i |
⊢ ( ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑧 = 𝑥 ∧ 𝑧 𝐴 𝑦 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑧 𝐴 𝑦 ) ) |
11 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) |
12 |
11
|
equsexvw |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑥 𝐴 𝑦 ) |
13 |
10 12
|
bitri |
⊢ ( ∃ 𝑧 ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑥 𝐴 𝑦 ) |
14 |
4 13
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ I ) ↔ 𝑥 𝐴 𝑦 ) |
15 |
|
df-br |
⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
16 |
14 15
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ I ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
17 |
16
|
eqrelriv |
⊢ ( ( Rel ( 𝐴 ∘ I ) ∧ Rel 𝐴 ) → ( 𝐴 ∘ I ) = 𝐴 ) |
18 |
1 17
|
mpan |
⊢ ( Rel 𝐴 → ( 𝐴 ∘ I ) = 𝐴 ) |