| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrel2 |
⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) |
| 2 |
|
cnvco |
⊢ ◡ ( ◡ 𝐴 ∘ I ) = ( ◡ I ∘ ◡ ◡ 𝐴 ) |
| 3 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
| 4 |
|
coi1 |
⊢ ( Rel ◡ 𝐴 → ( ◡ 𝐴 ∘ I ) = ◡ 𝐴 ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ◡ 𝐴 ∘ I ) = ◡ 𝐴 |
| 6 |
5
|
cnveqi |
⊢ ◡ ( ◡ 𝐴 ∘ I ) = ◡ ◡ 𝐴 |
| 7 |
2 6
|
eqtr3i |
⊢ ( ◡ I ∘ ◡ ◡ 𝐴 ) = ◡ ◡ 𝐴 |
| 8 |
|
cnvi |
⊢ ◡ I = I |
| 9 |
|
coeq2 |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( ◡ I ∘ ◡ ◡ 𝐴 ) = ( ◡ I ∘ 𝐴 ) ) |
| 10 |
|
coeq1 |
⊢ ( ◡ I = I → ( ◡ I ∘ 𝐴 ) = ( I ∘ 𝐴 ) ) |
| 11 |
9 10
|
sylan9eq |
⊢ ( ( ◡ ◡ 𝐴 = 𝐴 ∧ ◡ I = I ) → ( ◡ I ∘ ◡ ◡ 𝐴 ) = ( I ∘ 𝐴 ) ) |
| 12 |
8 11
|
mpan2 |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( ◡ I ∘ ◡ ◡ 𝐴 ) = ( I ∘ 𝐴 ) ) |
| 13 |
|
id |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ◡ ◡ 𝐴 = 𝐴 ) |
| 14 |
7 12 13
|
3eqtr3a |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( I ∘ 𝐴 ) = 𝐴 ) |
| 15 |
1 14
|
sylbi |
⊢ ( Rel 𝐴 → ( I ∘ 𝐴 ) = 𝐴 ) |