Metamath Proof Explorer


Theorem coiniss

Description: Coinitiality for a subset. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cofss.1 ( 𝜑𝐴 No )
cofss.2 ( 𝜑𝐵𝐴 )
Assertion coiniss ( 𝜑 → ∀ 𝑥𝐵𝑦𝐴 𝑦 ≤s 𝑥 )

Proof

Step Hyp Ref Expression
1 cofss.1 ( 𝜑𝐴 No )
2 cofss.2 ( 𝜑𝐵𝐴 )
3 2 sselda ( ( 𝜑𝑧𝐵 ) → 𝑧𝐴 )
4 2 1 sstrd ( 𝜑𝐵 No )
5 4 sselda ( ( 𝜑𝑧𝐵 ) → 𝑧 No )
6 slerflex ( 𝑧 No 𝑧 ≤s 𝑧 )
7 5 6 syl ( ( 𝜑𝑧𝐵 ) → 𝑧 ≤s 𝑧 )
8 breq1 ( 𝑦 = 𝑧 → ( 𝑦 ≤s 𝑧𝑧 ≤s 𝑧 ) )
9 8 rspcev ( ( 𝑧𝐴𝑧 ≤s 𝑧 ) → ∃ 𝑦𝐴 𝑦 ≤s 𝑧 )
10 3 7 9 syl2anc ( ( 𝜑𝑧𝐵 ) → ∃ 𝑦𝐴 𝑦 ≤s 𝑧 )
11 10 ralrimiva ( 𝜑 → ∀ 𝑧𝐵𝑦𝐴 𝑦 ≤s 𝑧 )
12 breq2 ( 𝑥 = 𝑧 → ( 𝑦 ≤s 𝑥𝑦 ≤s 𝑧 ) )
13 12 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐴 𝑦 ≤s 𝑥 ↔ ∃ 𝑦𝐴 𝑦 ≤s 𝑧 ) )
14 13 cbvralvw ( ∀ 𝑥𝐵𝑦𝐴 𝑦 ≤s 𝑥 ↔ ∀ 𝑧𝐵𝑦𝐴 𝑦 ≤s 𝑧 )
15 11 14 sylibr ( 𝜑 → ∀ 𝑥𝐵𝑦𝐴 𝑦 ≤s 𝑥 )