| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpgid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpgid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
hpgid.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
hpgid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
hpgid.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 6 |
|
hpgid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
hpgid.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 8 |
|
colopp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
colopp.p |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 10 |
|
colopp.1 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 11 |
|
colhp.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 12 |
|
ancom |
⊢ ( ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ∧ ¬ 𝐴 ∈ 𝐷 ) ↔ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ∧ ¬ 𝐴 ∈ 𝐷 ) ↔ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐵 ∈ 𝑃 ) |
| 17 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 18 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 19 |
1 3 2 4 5 9
|
tglnpt |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 20 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) |
| 21 |
1 17 2 3 18 4 19 20 6
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
| 24 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
| 25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
| 26 |
|
nelne2 |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ≠ 𝐴 ) |
| 27 |
9 26
|
sylan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ≠ 𝐴 ) |
| 28 |
27
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 ≠ 𝐶 ) |
| 29 |
1 17 2 3 18 4 19 20 6
|
mirbtwn |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 30 |
1 17 2 4 21 19 6 29
|
tgbtwncom |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 32 |
1 2 3 14 25 24 22 28 31
|
btwnlng3 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ ( 𝐴 𝐿 𝐶 ) ) |
| 33 |
1 3 2 4 6 8 19 10
|
colrot1 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
| 34 |
1 3 2 4 8 19 6 33
|
colcom |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐿 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 ∈ ( 𝐶 𝐿 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
| 36 |
1 2 3 14 22 25 24 16 32 35
|
coltr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ ( 𝐶 𝐿 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
| 37 |
1 3 2 14 24 16 22 36
|
colrot1 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐶 ∈ ( 𝐵 𝐿 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∨ 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 38 |
1 2 3 14 15 16 7 22 23 37
|
colopp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐵 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ) ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ¬ 𝐴 ∈ 𝐷 ) |
| 40 |
1 17 2 3 18 4 19 20 6
|
mirmir |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) = 𝐴 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) = 𝐴 ) |
| 42 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 43 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 44 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
| 45 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) |
| 46 |
1 17 2 3 18 42 20 43 44 45
|
mirln |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∈ 𝐷 ) |
| 47 |
41 46
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 48 |
47
|
stoic1a |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐶 ) → 𝑡 = 𝐶 ) |
| 50 |
49
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐶 ) → ( 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ↔ 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) |
| 51 |
9 50 30
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 53 |
39 48 52
|
jca31 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) |
| 54 |
1 17 2 7 25 22
|
islnopp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) ) |
| 55 |
53 54
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) |
| 56 |
1 2 3 7 14 15 25 16 22 55
|
lnopp2hpgb |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐵 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) |
| 57 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
| 58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
| 59 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ 𝑃 ) |
| 60 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
| 61 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ 𝐷 ) |
| 62 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → ¬ 𝐵 ∈ 𝐷 ) |
| 63 |
|
nelne2 |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) → 𝐶 ≠ 𝐵 ) |
| 64 |
63
|
necomd |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) → 𝐵 ≠ 𝐶 ) |
| 65 |
61 62 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐵 ≠ 𝐶 ) |
| 66 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐴 ≠ 𝐶 ) |
| 67 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 68 |
1 17 2 3 18 60 20 11 59 57 58 58 65 66 67
|
mirhl2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ) |
| 69 |
1 2 11 57 58 59 60 68
|
hlcomd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
| 70 |
69
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
| 71 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 72 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 73 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
| 74 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 75 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐶 ∈ 𝑃 ) |
| 76 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
| 77 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 78 |
1 2 11 71 72 73 74 75 76 77
|
btwnhl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 79 |
1 2 11 71 72 75 74 3 76
|
hlln |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 81 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 82 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ∈ 𝑃 ) |
| 83 |
75
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
| 84 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
| 85 |
76
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
| 86 |
1 2 11 84 82 83 81 85
|
hlne2 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ≠ 𝐶 ) |
| 87 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 88 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ∈ 𝐷 ) |
| 89 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
| 90 |
1 2 3 81 82 83 86 86 87 88 89
|
tglinethru |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐷 = ( 𝐵 𝐿 𝐶 ) ) |
| 91 |
80 90
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 92 |
39
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → ¬ 𝐴 ∈ 𝐷 ) |
| 93 |
91 92
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ¬ 𝐵 ∈ 𝐷 ) |
| 94 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) |
| 95 |
78 93 94
|
3jca |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ) |
| 96 |
70 95
|
impbida |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ↔ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) |
| 97 |
38 56 96
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) |
| 98 |
97
|
pm5.32da |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ↔ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) ) |
| 99 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
| 100 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 101 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
| 102 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 103 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 104 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
| 105 |
1 2 3 7 100 101 102 103 104
|
hpgne1 |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → ¬ 𝐴 ∈ 𝐷 ) |
| 106 |
105 104
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) |
| 107 |
99 106
|
impbida |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ↔ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) |
| 108 |
13 98 107
|
3bitr2rd |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ∧ ¬ 𝐴 ∈ 𝐷 ) ) ) |