Step |
Hyp |
Ref |
Expression |
1 |
|
hpgid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpgid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
hpgid.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
hpgid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
hpgid.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
6 |
|
hpgid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
hpgid.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
8 |
|
colopp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
colopp.p |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
10 |
|
colopp.1 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
11 |
|
colhp.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
12 |
|
ancom |
⊢ ( ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ∧ ¬ 𝐴 ∈ 𝐷 ) ↔ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ∧ ¬ 𝐴 ∈ 𝐷 ) ↔ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐵 ∈ 𝑃 ) |
17 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
18 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
19 |
1 3 2 4 5 9
|
tglnpt |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
20 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) |
21 |
1 17 2 3 18 4 19 20 6
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
24 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
26 |
|
nelne2 |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ≠ 𝐴 ) |
27 |
9 26
|
sylan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ≠ 𝐴 ) |
28 |
27
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 ≠ 𝐶 ) |
29 |
1 17 2 3 18 4 19 20 6
|
mirbtwn |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
30 |
1 17 2 4 21 19 6 29
|
tgbtwncom |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
32 |
1 2 3 14 25 24 22 28 31
|
btwnlng3 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ ( 𝐴 𝐿 𝐶 ) ) |
33 |
1 3 2 4 6 8 19 10
|
colrot1 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
34 |
1 3 2 4 8 19 6 33
|
colcom |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐿 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 ∈ ( 𝐶 𝐿 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
36 |
1 2 3 14 22 25 24 16 32 35
|
coltr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ ( 𝐶 𝐿 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
37 |
1 3 2 14 24 16 22 36
|
colrot1 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐶 ∈ ( 𝐵 𝐿 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∨ 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
38 |
1 2 3 14 15 16 7 22 23 37
|
colopp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐵 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ) ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ¬ 𝐴 ∈ 𝐷 ) |
40 |
1 17 2 3 18 4 19 20 6
|
mirmir |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) = 𝐴 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) = 𝐴 ) |
42 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
43 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
44 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
45 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) |
46 |
1 17 2 3 18 42 20 43 44 45
|
mirln |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∈ 𝐷 ) |
47 |
41 46
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
48 |
47
|
stoic1a |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐶 ) → 𝑡 = 𝐶 ) |
50 |
49
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐶 ) → ( 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ↔ 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) |
51 |
9 50 30
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
53 |
39 48 52
|
jca31 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) |
54 |
1 17 2 7 25 22
|
islnopp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) ) |
55 |
53 54
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) |
56 |
1 2 3 7 14 15 25 16 22 55
|
lnopp2hpgb |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐵 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) |
57 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
59 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ 𝑃 ) |
60 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
61 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ 𝐷 ) |
62 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → ¬ 𝐵 ∈ 𝐷 ) |
63 |
|
nelne2 |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) → 𝐶 ≠ 𝐵 ) |
64 |
63
|
necomd |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) → 𝐵 ≠ 𝐶 ) |
65 |
61 62 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐵 ≠ 𝐶 ) |
66 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐴 ≠ 𝐶 ) |
67 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
68 |
1 17 2 3 18 60 20 11 59 57 58 58 65 66 67
|
mirhl2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ) |
69 |
1 2 11 57 58 59 60 68
|
hlcomd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ) ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
70 |
69
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
71 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ 𝑃 ) |
72 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ 𝑃 ) |
73 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
74 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐺 ∈ TarskiG ) |
75 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐶 ∈ 𝑃 ) |
76 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
77 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐶 ∈ ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
78 |
1 2 11 71 72 73 74 75 76 77
|
btwnhl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
79 |
1 2 11 71 72 75 74 3 76
|
hlln |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
80 |
79
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
81 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
82 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ∈ 𝑃 ) |
83 |
75
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
84 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
85 |
76
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
86 |
1 2 11 84 82 83 81 85
|
hlne2 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ≠ 𝐶 ) |
87 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
88 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ∈ 𝐷 ) |
89 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
90 |
1 2 3 81 82 83 86 86 87 88 89
|
tglinethru |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐷 = ( 𝐵 𝐿 𝐶 ) ) |
91 |
80 90
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
92 |
39
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ∧ 𝐵 ∈ 𝐷 ) → ¬ 𝐴 ∈ 𝐷 ) |
93 |
91 92
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ¬ 𝐵 ∈ 𝐷 ) |
94 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) |
95 |
78 93 94
|
3jca |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) → ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ) |
96 |
70 95
|
impbida |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( ( 𝐶 ∈ ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝐷 ) ↔ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) |
97 |
38 56 96
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) |
98 |
97
|
pm5.32da |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ↔ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) ) |
99 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
100 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐺 ∈ TarskiG ) |
101 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
102 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐴 ∈ 𝑃 ) |
103 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐵 ∈ 𝑃 ) |
104 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
105 |
1 2 3 7 100 101 102 103 104
|
hpgne1 |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → ¬ 𝐴 ∈ 𝐷 ) |
106 |
105 104
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) → ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) |
107 |
99 106
|
impbida |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ↔ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) |
108 |
13 98 107
|
3bitr2rd |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ∧ ¬ 𝐴 ∈ 𝐷 ) ) ) |