| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
| 3 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 6 |
|
fveecn |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
| 7 |
5 2 6
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 9 |
|
fveecn |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
| 10 |
8 2 9
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
| 11 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 12 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 13 |
1 11 12
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 14 |
|
fveecn |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) |
| 15 |
5 11 14
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) |
| 16 |
|
fveecn |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 17 |
8 11 16
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 18 |
|
simp1 |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 19 |
|
simp3 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 20 |
|
mulcl |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 21 |
18 19 20
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 22 |
|
simp2 |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
| 23 |
|
simp1 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 24 |
|
mulcl |
⊢ ( ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 26 |
21 25
|
addcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 27 |
|
mulcl |
⊢ ( ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 28 |
22 19 27
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 29 |
26 28
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 30 |
|
simp2 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) |
| 31 |
|
mulcl |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
| 32 |
18 30 31
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
| 33 |
|
simp3 |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
| 34 |
|
mulcl |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 35 |
33 23 34
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 36 |
|
mulcl |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
| 37 |
33 30 36
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
| 38 |
35 37
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 39 |
29 32 38
|
subadd2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ) ) |
| 40 |
|
eqcom |
⊢ ( ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 41 |
39 40
|
bitrdi |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 42 |
35 32 37
|
addsubd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 43 |
35 32
|
addcomd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 45 |
42 44
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 47 |
41 46
|
bitrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 48 |
26 28 32
|
subsub4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 49 |
28 32
|
addcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 50 |
21 49 25
|
subsub3d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 51 |
28 25 32
|
subsub3d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 52 |
51
|
eqcomd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 53 |
52
|
oveq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 54 |
25 32
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 55 |
21 28 54
|
subsubd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 56 |
53 55
|
eqtrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 57 |
48 50 56
|
3eqtr2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 58 |
21 28
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 59 |
58 25 32
|
addsub12d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 60 |
21 28 32
|
subsub4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 62 |
57 59 61
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 63 |
62
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 64 |
32 35
|
addcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 65 |
|
subeqrev |
⊢ ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ∧ ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) ∧ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ∧ ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) ) |
| 66 |
26 28 64 37 65
|
syl22anc |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) ) |
| 67 |
47 63 66
|
3bitr3rd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 68 |
21 49
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
| 69 |
25 68 38
|
addrsub |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 70 |
35 37 25
|
sub32d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 71 |
35 25 37
|
subsub4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 72 |
70 71
|
eqtrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 73 |
72
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 74 |
69 73
|
bitrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 75 |
|
eqcom |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 76 |
74 75
|
bitrdi |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 77 |
67 76
|
bitrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 78 |
|
colinearalglem1 |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) ) |
| 79 |
|
3anrot |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ↔ ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) ) |
| 80 |
|
3anrot |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ↔ ( ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) ) |
| 81 |
|
colinearalglem1 |
⊢ ( ( ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 82 |
79 80 81
|
syl2anb |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
| 83 |
77 78 82
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
| 84 |
4 7 10 13 15 17 83
|
syl33anc |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
| 85 |
84
|
2ralbidva |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |