Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
colmid.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝑋 ) |
8 |
|
colmid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
9 |
|
colmid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
10 |
|
colmid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
11 |
|
colmid.c |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
12 |
|
colmid.d |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) = ( 𝑋 − 𝐵 ) ) |
13 |
|
animorr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
14 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
15 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑋 ∈ 𝑃 ) |
16 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
17 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
18 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑋 − 𝐴 ) = ( 𝑋 − 𝐵 ) ) |
19 |
18
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑋 − 𝐵 ) = ( 𝑋 − 𝐴 ) ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) |
21 |
1 2 3 14 16 15 17 20
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑋 ∈ ( 𝐵 𝐼 𝐴 ) ) |
22 |
1 2 3 4 5 14 15 7 16 17 19 21
|
ismir |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
23 |
22
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝑋 ∈ 𝑃 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) |
29 |
1 2 3 24 27 26 25 28
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝑋 ) ) |
30 |
1 2 3 24 26 27
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐴 𝐼 𝑋 ) ) |
31 |
1 2 3 6 10 8 10 9 12
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐴 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
33 |
32
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐵 − 𝑋 ) = ( 𝐴 − 𝑋 ) ) |
34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐴 − 𝑋 ) = ( 𝐴 − 𝑋 ) ) |
35 |
1 2 3 24 25 26 27 26 26 27 29 30 33 34
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐴 − 𝐴 ) ) |
36 |
1 2 3 24 25 26 26 35
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐵 = 𝐴 ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 = 𝐵 ) |
38 |
37
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 = 𝐵 ) |
39 |
38
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
40 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐺 ∈ TarskiG ) |
41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐴 ∈ 𝑃 ) |
42 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐵 ∈ 𝑃 ) |
43 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝑋 ∈ 𝑃 ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) |
45 |
1 2 3 40 42 43
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐵 ∈ ( 𝐵 𝐼 𝑋 ) ) |
46 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐴 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐵 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
48 |
1 2 3 40 41 42 43 42 42 43 44 45 46 47
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
49 |
1 2 3 40 41 42 42 48
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐴 = 𝐵 ) |
50 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐴 = 𝐵 ) |
51 |
50
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
52 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
53 |
11
|
orcomd |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
54 |
53
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
55 |
52 54
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
57 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
58 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
60 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝑋 ∈ 𝑃 ) |
61 |
1 4 3 56 57 58 59 60
|
tgellng |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) ) ) |
62 |
55 61
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) ) |
63 |
23 39 51 62
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
64 |
13 63
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |