Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
colperpexlem.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
7 |
|
colperpexlem.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
8 |
|
colperpexlem.n |
⊢ 𝑁 = ( 𝑆 ‘ 𝐵 ) |
9 |
|
colperpexlem.k |
⊢ 𝐾 = ( 𝑆 ‘ 𝑄 ) |
10 |
|
colperpexlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
11 |
|
colperpexlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
12 |
|
colperpexlem.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
13 |
|
colperpexlem.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
14 |
|
colperpexlem.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
15 |
|
colperpexlem.2 |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) = ( 𝑁 ‘ 𝐶 ) ) |
16 |
1 2 3 4 6 5 10 7 13
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑄 ) ∈ 𝑃 ) |
17 |
1 2 3 4 6 5 10 7 12
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐶 ) ∈ 𝑃 ) |
18 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
19 |
1 2 3 4 6 5 11 18 12
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
20 |
1 2 3 4 6 5 10 7 19
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ∈ 𝑃 ) |
21 |
1 2 3 4 6 5 11 8 12
|
mircl |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐶 ) ∈ 𝑃 ) |
22 |
15 21
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) ∈ 𝑃 ) |
23 |
1 2 3 4 6 5 13 9 17
|
mirbtwn |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) 𝐼 ( 𝑀 ‘ 𝐶 ) ) ) |
24 |
1 2 3 5 22 13 17 23
|
tgbtwncom |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝑀 ‘ 𝐶 ) 𝐼 ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) |
25 |
8
|
fveq1i |
⊢ ( 𝑁 ‘ 𝐶 ) = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) |
26 |
15 25
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐶 ) 𝐼 ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( ( 𝑀 ‘ 𝐶 ) 𝐼 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
28 |
24 27
|
eleqtrd |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝑀 ‘ 𝐶 ) 𝐼 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
29 |
1 2 3 5 17 13 19 28
|
tgbtwncom |
⊢ ( 𝜑 → 𝑄 ∈ ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) 𝐼 ( 𝑀 ‘ 𝐶 ) ) ) |
30 |
1 2 3 4 6 5 10 7 19 13 17 29
|
mirbtwni |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑄 ) ∈ ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) |
31 |
1 2 3 4 6 5 10 7 12
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) = 𝐶 ) |
32 |
31
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) 𝐼 𝐶 ) ) |
33 |
30 32
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑄 ) ∈ ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) 𝐼 𝐶 ) ) |
34 |
1 2 3 5 17 19
|
axtgcgrrflx |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐶 ) − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − ( 𝑀 ‘ 𝐶 ) ) ) |
35 |
1 2 3 4 6 5 10 7 19 17
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) − ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − ( 𝑀 ‘ 𝐶 ) ) ) |
36 |
31
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) − ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) − 𝐶 ) ) |
37 |
34 35 36
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐶 ) − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) − 𝐶 ) ) |
38 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑄 − ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( 𝑄 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
39 |
1 2 3 4 6 5 13 9 17
|
mircgr |
⊢ ( 𝜑 → ( 𝑄 − ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( 𝑄 − ( 𝑀 ‘ 𝐶 ) ) ) |
40 |
38 39
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑄 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝑄 − ( 𝑀 ‘ 𝐶 ) ) ) |
41 |
1 2 3 4 6 5 10 7 13 17
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑄 ) − ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( 𝑄 − ( 𝑀 ‘ 𝐶 ) ) ) |
42 |
31
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑄 ) − ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) ) = ( ( 𝑀 ‘ 𝑄 ) − 𝐶 ) ) |
43 |
40 41 42
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑄 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑀 ‘ 𝑄 ) − 𝐶 ) ) |
44 |
1 2 3 4 6 5 10 7 11
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) |
45 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ 𝐵 ) ) |
46 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐶 ) = ( 𝑀 ‘ 𝐶 ) ) |
47 |
44 45 46
|
s3eqd |
⊢ ( 𝜑 → 〈“ ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 = 〈“ 𝐵 ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 ) |
48 |
1 2 3 4 6 5 10 7 11
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐵 ) ) |
51 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
52 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
53 |
1 2 3 4 6 51 52 7
|
mircinv |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
54 |
50 53
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐵 ) = 𝐴 ) |
55 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 = 𝐵 ) |
56 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐶 = 𝐶 ) |
57 |
54 55 56
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 〈“ ( 𝑀 ‘ 𝐵 ) 𝐵 𝐶 ”〉 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
58 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
59 |
57 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 〈“ ( 𝑀 ‘ 𝐵 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
60 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
61 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
62 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
63 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ∈ 𝑃 ) |
64 |
1 2 3 4 6 60 61 7 62
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
65 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
67 |
1 2 3 4 6 60 61 7 62
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
68 |
1 4 3 60 64 62 61 67
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐿 𝐵 ) ∨ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) ) |
69 |
1 4 3 60 64 62 61 68
|
colcom |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ∨ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) ) |
70 |
1 2 3 4 6 60 61 62 63 64 65 66 69
|
ragcol |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 〈“ ( 𝑀 ‘ 𝐵 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
71 |
59 70
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ ( 𝑀 ‘ 𝐵 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
72 |
1 2 3 4 6 5 48 11 12 71 7 10
|
mirrag |
⊢ ( 𝜑 → 〈“ ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
73 |
47 72
|
eqeltrrd |
⊢ ( 𝜑 → 〈“ 𝐵 ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
74 |
1 2 3 4 6 5 11 48 17
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐵 ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 − ( 𝑀 ‘ 𝐶 ) ) = ( 𝐵 − ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) ) |
75 |
73 74
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑀 ‘ 𝐶 ) ) = ( 𝐵 − ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) |
76 |
1 2 3 4 6 5 10 7 12 11
|
mirmir2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) = ( 𝐵 − ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) |
78 |
75 77
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑀 ‘ 𝐶 ) ) = ( 𝐵 − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
79 |
1 2 3 5 11 17 11 20 78
|
tgcgrcomlr |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐶 ) − 𝐵 ) = ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) − 𝐵 ) ) |
80 |
1 2 3 4 6 5 11 18 12
|
mircgr |
⊢ ( 𝜑 → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |
81 |
1 2 3 5 11 19 11 12 80
|
tgcgrcomlr |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
82 |
1 2 3 5 17 13 19 11 20 16 12 11 28 33 37 43 79 81
|
tgifscgr |
⊢ ( 𝜑 → ( 𝑄 − 𝐵 ) = ( ( 𝑀 ‘ 𝑄 ) − 𝐵 ) ) |
83 |
1 2 3 5 13 11 16 11 82
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝑄 ) = ( 𝐵 − ( 𝑀 ‘ 𝑄 ) ) ) |
84 |
7
|
fveq1i |
⊢ ( 𝑀 ‘ 𝑄 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑄 ) |
85 |
84
|
oveq2i |
⊢ ( 𝐵 − ( 𝑀 ‘ 𝑄 ) ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑄 ) ) |
86 |
83 85
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐵 − 𝑄 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑄 ) ) ) |
87 |
1 2 3 4 6 5 11 10 13
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐵 𝐴 𝑄 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 − 𝑄 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑄 ) ) ) ) |
88 |
86 87
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐵 𝐴 𝑄 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |