Metamath Proof Explorer


Theorem colrot2

Description: Rotating the points defining a line. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tglngval.p 𝑃 = ( Base ‘ 𝐺 )
tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
tglngval.g ( 𝜑𝐺 ∈ TarskiG )
tglngval.x ( 𝜑𝑋𝑃 )
tglngval.y ( 𝜑𝑌𝑃 )
tgcolg.z ( 𝜑𝑍𝑃 )
colrot ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) )
Assertion colrot2 ( 𝜑 → ( 𝑌 ∈ ( 𝑍 𝐿 𝑋 ) ∨ 𝑍 = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 tglngval.p 𝑃 = ( Base ‘ 𝐺 )
2 tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglngval.g ( 𝜑𝐺 ∈ TarskiG )
5 tglngval.x ( 𝜑𝑋𝑃 )
6 tglngval.y ( 𝜑𝑌𝑃 )
7 tgcolg.z ( 𝜑𝑍𝑃 )
8 colrot ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) )
9 1 2 3 4 5 6 7 8 colrot1 ( 𝜑 → ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
10 1 2 3 4 6 7 5 9 colrot1 ( 𝜑 → ( 𝑌 ∈ ( 𝑍 𝐿 𝑋 ) ∨ 𝑍 = 𝑋 ) )