Metamath Proof Explorer


Theorem com3r

Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994)

Ref Expression
Hypothesis com3.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion com3r ( 𝜒 → ( 𝜑 → ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 com3.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 1 com23 ( 𝜑 → ( 𝜒 → ( 𝜓𝜃 ) ) )
3 2 com12 ( 𝜒 → ( 𝜑 → ( 𝜓𝜃 ) ) )