| Step | Hyp | Ref | Expression | 
						
							| 1 |  | comet.1 | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 2 |  | comet.2 | ⊢ ( 𝜑  →  𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) | 
						
							| 3 |  | comet.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] +∞ ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =  0 ) ) | 
						
							| 4 |  | comet.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 0 [,] +∞ )  ∧  𝑦  ∈  ( 0 [,] +∞ ) ) )  →  ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 5 |  | comet.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 0 [,] +∞ )  ∧  𝑦  ∈  ( 0 [,] +∞ ) ) )  →  ( 𝐹 ‘ ( 𝑥  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +𝑒  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 6 | 1 | elfvexd | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 7 |  | xmetf | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 9 | 8 | ffnd | ⊢ ( 𝜑  →  𝐷  Fn  ( 𝑋  ×  𝑋 ) ) | 
						
							| 10 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( 𝑎 𝐷 𝑏 )  ∈  ℝ* ) | 
						
							| 11 |  | xmetge0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  0  ≤  ( 𝑎 𝐷 𝑏 ) ) | 
						
							| 12 |  | elxrge0 | ⊢ ( ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑎 𝐷 𝑏 )  ∈  ℝ*  ∧  0  ≤  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 | 13 | 3expb | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 15 | 1 14 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 16 | 15 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑋 ∀ 𝑏  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 17 |  | ffnov | ⊢ ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] +∞ )  ↔  ( 𝐷  Fn  ( 𝑋  ×  𝑋 )  ∧  ∀ 𝑎  ∈  𝑋 ∀ 𝑏  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 18 | 9 16 17 | sylanbrc | ⊢ ( 𝜑  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 19 | 2 18 | fcod | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐷 ) : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 20 |  | opelxpi | ⊢ ( ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  〈 𝑎 ,  𝑏 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 21 |  | fvco3 | ⊢ ( ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  〈 𝑎 ,  𝑏 〉  ∈  ( 𝑋  ×  𝑋 ) )  →  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑎 ,  𝑏 〉 )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 ,  𝑏 〉 ) ) ) | 
						
							| 22 | 8 20 21 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑎 ,  𝑏 〉 )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 ,  𝑏 〉 ) ) ) | 
						
							| 23 |  | df-ov | ⊢ ( 𝑎 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑎 ,  𝑏 〉 ) | 
						
							| 24 |  | df-ov | ⊢ ( 𝑎 𝐷 𝑏 )  =  ( 𝐷 ‘ 〈 𝑎 ,  𝑏 〉 ) | 
						
							| 25 | 24 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 26 | 22 23 25 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( 𝑎 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝑎 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  0  ↔  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  =  0 ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  =  0 ) ) | 
						
							| 30 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( 𝑥  =  0  ↔  ( 𝑎 𝐷 𝑏 )  =  0 ) ) | 
						
							| 31 | 29 30 | bibi12d | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =  0 )  ↔  ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  =  0  ↔  ( 𝑎 𝐷 𝑏 )  =  0 ) ) ) | 
						
							| 32 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =  0 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =  0 ) ) | 
						
							| 34 | 31 33 15 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  =  0  ↔  ( 𝑎 𝐷 𝑏 )  =  0 ) ) | 
						
							| 35 |  | xmeteq0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( ( 𝑎 𝐷 𝑏 )  =  0  ↔  𝑎  =  𝑏 ) ) | 
						
							| 36 | 35 | 3expb | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝑎 𝐷 𝑏 )  =  0  ↔  𝑎  =  𝑏 ) ) | 
						
							| 37 | 1 36 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝑎 𝐷 𝑏 )  =  0  ↔  𝑎  =  𝑏 ) ) | 
						
							| 38 | 27 34 37 | 3bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝑎 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  0  ↔  𝑎  =  𝑏 ) ) | 
						
							| 39 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) | 
						
							| 40 | 15 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 41 | 39 40 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ∈  ℝ* ) | 
						
							| 42 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 43 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝑐  ∈  𝑋 ) | 
						
							| 44 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝑎  ∈  𝑋 ) | 
						
							| 45 | 42 43 44 | fovcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐 𝐷 𝑎 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 46 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝑏  ∈  𝑋 ) | 
						
							| 47 | 42 43 46 | fovcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 48 |  | ge0xaddcl | ⊢ ( ( ( 𝑐 𝐷 𝑎 )  ∈  ( 0 [,] +∞ )  ∧  ( 𝑐 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) )  →  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 49 | 45 47 48 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 50 | 39 49 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) )  ∈  ℝ* ) | 
						
							| 51 | 39 45 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  ∈  ℝ* ) | 
						
							| 52 | 39 47 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) )  ∈  ℝ* ) | 
						
							| 53 | 51 52 | xaddcld | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) )  ∈  ℝ* ) | 
						
							| 54 |  | 3anrot | ⊢ ( ( 𝑐  ∈  𝑋  ∧  𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  ↔  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) ) | 
						
							| 55 |  | xmettri2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑐  ∈  𝑋  ∧  𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 56 | 54 55 | sylan2br | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 57 | 1 56 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 58 | 4 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 60 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( 𝑥  ≤  𝑦  ↔  ( 𝑎 𝐷 𝑏 )  ≤  𝑦 ) ) | 
						
							| 61 | 28 | breq1d | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 62 | 60 61 | imbi12d | ⊢ ( 𝑥  =  ( 𝑎 𝐷 𝑏 )  →  ( ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝑎 𝐷 𝑏 )  ≤  𝑦  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 63 |  | breq2 | ⊢ ( 𝑦  =  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( ( 𝑎 𝐷 𝑏 )  ≤  𝑦  ↔  ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 64 |  | fveq2 | ⊢ ( 𝑦  =  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 65 | 64 | breq2d | ⊢ ( 𝑦  =  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 66 | 63 65 | imbi12d | ⊢ ( 𝑦  =  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( ( ( 𝑎 𝐷 𝑏 )  ≤  𝑦  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 67 | 62 66 | rspc2va | ⊢ ( ( ( ( 𝑎 𝐷 𝑏 )  ∈  ( 0 [,] +∞ )  ∧  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  ∈  ( 0 [,] +∞ ) )  ∧  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 68 | 40 49 59 67 | syl21anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 69 | 57 68 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 70 | 5 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +𝑒  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +𝑒  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 72 |  | fvoveq1 | ⊢ ( 𝑥  =  ( 𝑐 𝐷 𝑎 )  →  ( 𝐹 ‘ ( 𝑥  +𝑒  𝑦 ) )  =  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  𝑦 ) ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑐 𝐷 𝑎 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( 𝑥  =  ( 𝑐 𝐷 𝑎 )  →  ( ( 𝐹 ‘ 𝑥 )  +𝑒  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 75 | 72 74 | breq12d | ⊢ ( 𝑥  =  ( 𝑐 𝐷 𝑎 )  →  ( ( 𝐹 ‘ ( 𝑥  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +𝑒  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 76 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑐 𝐷 𝑏 )  →  ( ( 𝑐 𝐷 𝑎 )  +𝑒  𝑦 )  =  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 77 | 76 | fveq2d | ⊢ ( 𝑦  =  ( 𝑐 𝐷 𝑏 )  →  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  𝑦 ) )  =  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑐 𝐷 𝑏 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( 𝑦  =  ( 𝑐 𝐷 𝑏 )  →  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 80 | 77 79 | breq12d | ⊢ ( 𝑦  =  ( 𝑐 𝐷 𝑏 )  →  ( ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) )  ≤  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 81 | 75 80 | rspc2va | ⊢ ( ( ( ( 𝑐 𝐷 𝑎 )  ∈  ( 0 [,] +∞ )  ∧  ( 𝑐 𝐷 𝑏 )  ∈  ( 0 [,] +∞ ) )  ∧  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥  +𝑒  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +𝑒  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) )  ≤  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 82 | 45 47 71 81 | syl21anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) )  ≤  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 83 | 41 50 53 69 82 | xrletrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) )  ≤  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 84 | 26 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑎 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 85 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 86 | 43 44 | opelxpd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  〈 𝑐 ,  𝑎 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 87 | 85 86 | fvco3d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑐 ,  𝑎 〉 )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 ,  𝑎 〉 ) ) ) | 
						
							| 88 |  | df-ov | ⊢ ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑎 )  =  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑐 ,  𝑎 〉 ) | 
						
							| 89 |  | df-ov | ⊢ ( 𝑐 𝐷 𝑎 )  =  ( 𝐷 ‘ 〈 𝑐 ,  𝑎 〉 ) | 
						
							| 90 | 89 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 ,  𝑎 〉 ) ) | 
						
							| 91 | 87 88 90 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑎 )  =  ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ) | 
						
							| 92 | 43 46 | opelxpd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  〈 𝑐 ,  𝑏 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 93 | 85 92 | fvco3d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑐 ,  𝑏 〉 )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 ,  𝑏 〉 ) ) ) | 
						
							| 94 |  | df-ov | ⊢ ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  ( ( 𝐹  ∘  𝐷 ) ‘ 〈 𝑐 ,  𝑏 〉 ) | 
						
							| 95 |  | df-ov | ⊢ ( 𝑐 𝐷 𝑏 )  =  ( 𝐷 ‘ 〈 𝑐 ,  𝑏 〉 ) | 
						
							| 96 | 95 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) )  =  ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 ,  𝑏 〉 ) ) | 
						
							| 97 | 93 94 96 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑏 )  =  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 98 | 91 97 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑎 )  +𝑒  ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑏 ) )  =  ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) )  +𝑒  ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 99 | 83 84 98 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑎 ( 𝐹  ∘  𝐷 ) 𝑏 )  ≤  ( ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑎 )  +𝑒  ( 𝑐 ( 𝐹  ∘  𝐷 ) 𝑏 ) ) ) | 
						
							| 100 | 6 19 38 99 | isxmetd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐷 )  ∈  ( ∞Met ‘ 𝑋 ) ) |