Step |
Hyp |
Ref |
Expression |
1 |
|
comfeq.1 |
⊢ · = ( comp ‘ 𝐶 ) |
2 |
|
comfeq.2 |
⊢ ∙ = ( comp ‘ 𝐷 ) |
3 |
|
comfeq.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
comfeq.3 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
5 |
|
comfeq.4 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
6 |
|
comfeq.5 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
7 |
4
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) |
9 |
7 4 8
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) ) |
10 |
|
eqid |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
12 |
10 11 3 1
|
comfffval |
⊢ ( compf ‘ 𝐶 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) |
13 |
9 12
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( compf ‘ 𝐶 ) ) |
14 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
15 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
16 |
|
xp2nd |
⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐵 ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐵 ) |
18 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
19 |
17 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ ( Base ‘ 𝐶 ) ) |
20 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
21 |
20 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
22 |
11 3 14 15 19 21
|
homfeqval |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) = ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) ) |
23 |
|
xp1st |
⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ 𝐵 ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ 𝐵 ) |
25 |
24 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ ( Base ‘ 𝐶 ) ) |
26 |
11 3 14 15 25 19
|
homfeqval |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ 𝑢 ) 𝐻 ( 2nd ‘ 𝑢 ) ) = ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 𝑢 ) ) ) |
27 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑢 ) 𝐻 ( 2nd ‘ 𝑢 ) ) = ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
28 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 𝑢 ) ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
29 |
26 27 28
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
30 |
|
1st2nd2 |
⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
33 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
34 |
29 32 33
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) |
35 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) |
36 |
22 34 35
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
37 |
36
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
38 |
5
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
39 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
40 |
38 5 39
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
41 |
37 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
42 |
|
eqid |
⊢ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
44 |
42 43 14 2
|
comfffval |
⊢ ( compf ‘ 𝐷 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
45 |
41 44
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( compf ‘ 𝐷 ) ) |
46 |
13 45
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) ) |
47 |
|
ovex |
⊢ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∈ V |
48 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑢 ) ∈ V |
49 |
47 48
|
mpoex |
⊢ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V |
50 |
49
|
rgen2w |
⊢ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V |
51 |
|
mpo2eqb |
⊢ ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
52 |
50 51
|
ax-mp |
⊢ ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
53 |
|
vex |
⊢ 𝑥 ∈ V |
54 |
|
vex |
⊢ 𝑦 ∈ V |
55 |
53 54
|
op2ndd |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑢 ) = 𝑦 ) |
56 |
55
|
oveq1d |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
58 |
|
df-ov |
⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) |
59 |
57 58
|
eqtr4di |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑢 ) = ( 𝑥 𝐻 𝑦 ) ) |
60 |
|
oveq1 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 · 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
61 |
60
|
oveqd |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
62 |
|
oveq1 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ∙ 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) ) |
63 |
62
|
oveqd |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
64 |
61 63
|
eqeq12d |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
65 |
59 64
|
raleqbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
66 |
56 65
|
raleqbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
67 |
|
ovex |
⊢ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V |
68 |
67
|
rgen2w |
⊢ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V |
69 |
|
mpo2eqb |
⊢ ( ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V → ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
70 |
68 69
|
ax-mp |
⊢ ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) |
71 |
|
ralcom |
⊢ ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
72 |
66 70 71
|
3bitr4g |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
73 |
72
|
ralbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
74 |
73
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
75 |
52 74
|
bitri |
⊢ ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
76 |
46 75
|
bitr3di |
⊢ ( 𝜑 → ( ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |