Metamath Proof Explorer


Theorem comfeq

Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfeq.1 · = ( comp ‘ 𝐶 )
comfeq.2 = ( comp ‘ 𝐷 )
comfeq.h 𝐻 = ( Hom ‘ 𝐶 )
comfeq.3 ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
comfeq.4 ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
comfeq.5 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
Assertion comfeq ( 𝜑 → ( ( compf𝐶 ) = ( compf𝐷 ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )

Proof

Step Hyp Ref Expression
1 comfeq.1 · = ( comp ‘ 𝐶 )
2 comfeq.2 = ( comp ‘ 𝐷 )
3 comfeq.h 𝐻 = ( Hom ‘ 𝐶 )
4 comfeq.3 ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
5 comfeq.4 ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
6 comfeq.5 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
7 4 sqxpeqd ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
8 eqidd ( 𝜑 → ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) )
9 7 4 8 mpoeq123dv ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) )
10 eqid ( compf𝐶 ) = ( compf𝐶 )
11 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
12 10 11 3 1 comfffval ( compf𝐶 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) )
13 9 12 eqtr4di ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( compf𝐶 ) )
14 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
15 6 3ad2ant1 ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
16 xp2nd ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 2nd𝑢 ) ∈ 𝐵 )
17 16 3ad2ant2 ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 2nd𝑢 ) ∈ 𝐵 )
18 4 3ad2ant1 ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → 𝐵 = ( Base ‘ 𝐶 ) )
19 17 18 eleqtrd ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 2nd𝑢 ) ∈ ( Base ‘ 𝐶 ) )
20 simp3 ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → 𝑧𝐵 )
21 20 18 eleqtrd ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
22 11 3 14 15 19 21 homfeqval ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( ( 2nd𝑢 ) 𝐻 𝑧 ) = ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) )
23 xp1st ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 1st𝑢 ) ∈ 𝐵 )
24 23 3ad2ant2 ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 1st𝑢 ) ∈ 𝐵 )
25 24 18 eleqtrd ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 1st𝑢 ) ∈ ( Base ‘ 𝐶 ) )
26 11 3 14 15 25 19 homfeqval ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( ( 1st𝑢 ) 𝐻 ( 2nd𝑢 ) ) = ( ( 1st𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) )
27 df-ov ( ( 1st𝑢 ) 𝐻 ( 2nd𝑢 ) ) = ( 𝐻 ‘ ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ )
28 df-ov ( ( 1st𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) = ( ( Hom ‘ 𝐷 ) ‘ ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ )
29 26 27 28 3eqtr3g ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 𝐻 ‘ ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ ) = ( ( Hom ‘ 𝐷 ) ‘ ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ ) )
30 1st2nd2 ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → 𝑢 = ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ )
31 30 3ad2ant2 ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → 𝑢 = ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ )
32 31 fveq2d ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 𝐻𝑢 ) = ( 𝐻 ‘ ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ ) )
33 31 fveq2d ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ ⟨ ( 1st𝑢 ) , ( 2nd𝑢 ) ⟩ ) )
34 29 32 33 3eqtr4d ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 𝐻𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) )
35 eqidd ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) )
36 22 34 35 mpoeq123dv ( ( 𝜑𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧𝐵 ) → ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) )
37 36 mpoeq3dva ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) )
38 5 sqxpeqd ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) )
39 eqidd ( 𝜑 → ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) )
40 38 5 39 mpoeq123dv ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) )
41 37 40 eqtrd ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) )
42 eqid ( compf𝐷 ) = ( compf𝐷 )
43 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
44 42 43 14 2 comfffval ( compf𝐷 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) )
45 41 44 eqtr4di ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) = ( compf𝐷 ) )
46 13 45 eqeq12d ( 𝜑 → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) ↔ ( compf𝐶 ) = ( compf𝐷 ) ) )
47 ovex ( ( 2nd𝑢 ) 𝐻 𝑧 ) ∈ V
48 fvex ( 𝐻𝑢 ) ∈ V
49 47 48 mpoex ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V
50 49 rgen2w 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧𝐵 ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V
51 mpo2eqb ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧𝐵 ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧𝐵 ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) )
52 50 51 ax-mp ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧𝐵 ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) )
53 vex 𝑥 ∈ V
54 vex 𝑦 ∈ V
55 53 54 op2ndd ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑢 ) = 𝑦 )
56 55 oveq1d ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 2nd𝑢 ) 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) )
57 fveq2 ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐻𝑢 ) = ( 𝐻 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) )
58 df-ov ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ ⟨ 𝑥 , 𝑦 ⟩ )
59 57 58 eqtr4di ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐻𝑢 ) = ( 𝑥 𝐻 𝑦 ) )
60 oveq1 ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑢 · 𝑧 ) = ( ⟨ 𝑥 , 𝑦· 𝑧 ) )
61 60 oveqd ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) )
62 oveq1 ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑢 𝑧 ) = ( ⟨ 𝑥 , 𝑦 𝑧 ) )
63 62 oveqd ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
64 61 63 eqeq12d ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ↔ ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )
65 59 64 raleqbidv ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∀ 𝑓 ∈ ( 𝐻𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )
66 56 65 raleqbidv ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∀ 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )
67 ovex ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V
68 67 rgen2w 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V
69 mpo2eqb ( ∀ 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V → ( ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) )
70 68 69 ax-mp ( ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) )
71 ralcom ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
72 66 70 71 3bitr4g ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )
73 72 ralbidv ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∀ 𝑧𝐵 ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )
74 73 ralxp ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧𝐵 ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
75 52 74 bitri ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻𝑢 ) ↦ ( 𝑔 ( 𝑢 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
76 46 75 bitr3di ( 𝜑 → ( ( compf𝐶 ) = ( compf𝐷 ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) ) )