Step |
Hyp |
Ref |
Expression |
1 |
|
comfeqval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
comfeqval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
comfeqval.1 |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
comfeqval.2 |
⊢ ∙ = ( comp ‘ 𝐷 ) |
5 |
|
comfeqval.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
6 |
|
comfeqval.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
7 |
|
comfeqval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
comfeqval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
comfeqval.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
10 |
|
comfeqval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
11 |
|
comfeqval.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
12 |
6
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐶 ) 𝑍 ) = ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐷 ) 𝑍 ) ) |
13 |
12
|
oveqd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐷 ) 𝑍 ) 𝐹 ) ) |
14 |
|
eqid |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) |
15 |
14 1 2 3 7 8 9 10 11
|
comfval |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
16 |
|
eqid |
⊢ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
18 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
19 |
5
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
20 |
1 19
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
21 |
7 20
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
22 |
8 20
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
23 |
9 20
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐷 ) ) |
24 |
1 2 18 5 7 8
|
homfeqval |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
25 |
10 24
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
26 |
1 2 18 5 8 9
|
homfeqval |
⊢ ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐷 ) 𝑍 ) ) |
27 |
11 26
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑍 ) ) |
28 |
16 17 18 4 21 22 23 25 27
|
comfval |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐷 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝐹 ) ) |
29 |
13 15 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝐹 ) ) |