Metamath Proof Explorer


Theorem comfffn

Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffn.o 𝑂 = ( compf𝐶 )
comfffn.b 𝐵 = ( Base ‘ 𝐶 )
Assertion comfffn 𝑂 Fn ( ( 𝐵 × 𝐵 ) × 𝐵 )

Proof

Step Hyp Ref Expression
1 comfffn.o 𝑂 = ( compf𝐶 )
2 comfffn.b 𝐵 = ( Base ‘ 𝐶 )
3 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
4 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
5 1 2 3 4 comfffval 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) )
6 ovex ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V
7 fvex ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ∈ V
8 6 7 mpoex ( 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) ∈ V
9 5 8 fnmpoi 𝑂 Fn ( ( 𝐵 × 𝐵 ) × 𝐵 )