Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval.o |
⊢ 𝑂 = ( compf ‘ 𝐶 ) |
2 |
|
comfffval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
comfffval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
comfffval.x |
⊢ · = ( comp ‘ 𝐶 ) |
5 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
7 |
6
|
sqxpeqd |
⊢ ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) = ( 𝐵 × 𝐵 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
10 |
9
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) = ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) ) |
11 |
9
|
fveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
13 |
12 4
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = · ) |
14 |
13
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
15 |
14
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) = ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) |
16 |
10 11 15
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |
17 |
7 6 16
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ) |
18 |
|
df-comf |
⊢ compf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) ) |
19 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
20 |
19 19
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
21 |
20 19
|
mpoex |
⊢ ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ∈ V |
22 |
17 18 21
|
fvmpt |
⊢ ( 𝐶 ∈ V → ( compf ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ) |
23 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( compf ‘ 𝐶 ) = ∅ ) |
24 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ ) |
25 |
2 24
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝐵 = ∅ ) |
26 |
25
|
olcd |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐵 × 𝐵 ) = ∅ ∨ 𝐵 = ∅ ) ) |
27 |
|
0mpo0 |
⊢ ( ( ( 𝐵 × 𝐵 ) = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) = ∅ ) |
28 |
26 27
|
syl |
⊢ ( ¬ 𝐶 ∈ V → ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) = ∅ ) |
29 |
23 28
|
eqtr4d |
⊢ ( ¬ 𝐶 ∈ V → ( compf ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ) |
30 |
22 29
|
pm2.61i |
⊢ ( compf ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |
31 |
1 30
|
eqtri |
⊢ 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |