| Step | Hyp | Ref | Expression | 
						
							| 1 |  | comfffval.o | ⊢ 𝑂  =  ( compf ‘ 𝐶 ) | 
						
							| 2 |  | comfffval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | comfffval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 |  | comfffval.x | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 7 | 6 | sqxpeqd | ⊢ ( 𝑐  =  𝐶  →  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 9 | 8 3 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  𝐻 ) | 
						
							| 10 | 9 | oveqd | ⊢ ( 𝑐  =  𝐶  →  ( ( 2nd  ‘ 𝑥 ) ( Hom  ‘ 𝑐 ) 𝑦 )  =  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ) | 
						
							| 11 | 9 | fveq1d | ⊢ ( 𝑐  =  𝐶  →  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 )  =  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( comp ‘ 𝑐 )  =  ( comp ‘ 𝐶 ) ) | 
						
							| 13 | 12 4 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( comp ‘ 𝑐 )  =   ·  ) | 
						
							| 14 | 13 | oveqd | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 15 | 14 | oveqd | ⊢ ( 𝑐  =  𝐶  →  ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 )  =  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) | 
						
							| 16 | 10 11 15 | mpoeq123dv | ⊢ ( 𝑐  =  𝐶  →  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) ( Hom  ‘ 𝑐 ) 𝑦 ) ,  𝑓  ∈  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) )  =  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) ) | 
						
							| 17 | 7 6 16 | mpoeq123dv | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥  ∈  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) ) ,  𝑦  ∈  ( Base ‘ 𝑐 )  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) ( Hom  ‘ 𝑐 ) 𝑦 ) ,  𝑓  ∈  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) ) ) | 
						
							| 18 |  | df-comf | ⊢ compf  =  ( 𝑐  ∈  V  ↦  ( 𝑥  ∈  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) ) ,  𝑦  ∈  ( Base ‘ 𝑐 )  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) ( Hom  ‘ 𝑐 ) 𝑦 ) ,  𝑓  ∈  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) ) | 
						
							| 19 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 20 | 19 19 | xpex | ⊢ ( 𝐵  ×  𝐵 )  ∈  V | 
						
							| 21 | 20 19 | mpoex | ⊢ ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) )  ∈  V | 
						
							| 22 | 17 18 21 | fvmpt | ⊢ ( 𝐶  ∈  V  →  ( compf ‘ 𝐶 )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) ) ) | 
						
							| 23 |  | fvprc | ⊢ ( ¬  𝐶  ∈  V  →  ( compf ‘ 𝐶 )  =  ∅ ) | 
						
							| 24 |  | fvprc | ⊢ ( ¬  𝐶  ∈  V  →  ( Base ‘ 𝐶 )  =  ∅ ) | 
						
							| 25 | 2 24 | eqtrid | ⊢ ( ¬  𝐶  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 26 | 25 | olcd | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐵  ×  𝐵 )  =  ∅  ∨  𝐵  =  ∅ ) ) | 
						
							| 27 |  | 0mpo0 | ⊢ ( ( ( 𝐵  ×  𝐵 )  =  ∅  ∨  𝐵  =  ∅ )  →  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) )  =  ∅ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ¬  𝐶  ∈  V  →  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) )  =  ∅ ) | 
						
							| 29 | 23 28 | eqtr4d | ⊢ ( ¬  𝐶  ∈  V  →  ( compf ‘ 𝐶 )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) ) ) | 
						
							| 30 | 22 29 | pm2.61i | ⊢ ( compf ‘ 𝐶 )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) ) | 
						
							| 31 | 1 30 | eqtri | ⊢ 𝑂  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 ) ,  𝑦  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑥 ) 𝐻 𝑦 ) ,  𝑓  ∈  ( 𝐻 ‘ 𝑥 )  ↦  ( 𝑔 ( 𝑥  ·  𝑦 ) 𝑓 ) ) ) |