Metamath Proof Explorer


Theorem comfffval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)

Ref Expression
Hypotheses comfffval.o 𝑂 = ( compf𝐶 )
comfffval.b 𝐵 = ( Base ‘ 𝐶 )
comfffval.h 𝐻 = ( Hom ‘ 𝐶 )
comfffval.x · = ( comp ‘ 𝐶 )
Assertion comfffval 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) )

Proof

Step Hyp Ref Expression
1 comfffval.o 𝑂 = ( compf𝐶 )
2 comfffval.b 𝐵 = ( Base ‘ 𝐶 )
3 comfffval.h 𝐻 = ( Hom ‘ 𝐶 )
4 comfffval.x · = ( comp ‘ 𝐶 )
5 fveq2 ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) )
6 5 2 eqtr4di ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 )
7 6 sqxpeqd ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) = ( 𝐵 × 𝐵 ) )
8 fveq2 ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) )
9 8 3 eqtr4di ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 )
10 9 oveqd ( 𝑐 = 𝐶 → ( ( 2nd𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) = ( ( 2nd𝑥 ) 𝐻 𝑦 ) )
11 9 fveq1d ( 𝑐 = 𝐶 → ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) = ( 𝐻𝑥 ) )
12 fveq2 ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) )
13 12 4 eqtr4di ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = · )
14 13 oveqd ( 𝑐 = 𝐶 → ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) = ( 𝑥 · 𝑦 ) )
15 14 oveqd ( 𝑐 = 𝐶 → ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) = ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) )
16 10 11 15 mpoeq123dv ( 𝑐 = 𝐶 → ( 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) )
17 7 6 16 mpoeq123dv ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) )
18 df-comf compf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) )
19 2 fvexi 𝐵 ∈ V
20 19 19 xpex ( 𝐵 × 𝐵 ) ∈ V
21 20 19 mpoex ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ∈ V
22 17 18 21 fvmpt ( 𝐶 ∈ V → ( compf𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) )
23 fvprc ( ¬ 𝐶 ∈ V → ( compf𝐶 ) = ∅ )
24 fvprc ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ )
25 2 24 eqtrid ( ¬ 𝐶 ∈ V → 𝐵 = ∅ )
26 25 olcd ( ¬ 𝐶 ∈ V → ( ( 𝐵 × 𝐵 ) = ∅ ∨ 𝐵 = ∅ ) )
27 0mpo0 ( ( ( 𝐵 × 𝐵 ) = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) = ∅ )
28 26 27 syl ( ¬ 𝐶 ∈ V → ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) = ∅ )
29 23 28 eqtr4d ( ¬ 𝐶 ∈ V → ( compf𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) )
30 22 29 pm2.61i ( compf𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) )
31 1 30 eqtri 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦𝐵 ↦ ( 𝑔 ∈ ( ( 2nd𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) )