Step |
Hyp |
Ref |
Expression |
1 |
|
comfffn.o |
⊢ 𝑂 = ( compf ‘ 𝐶 ) |
2 |
|
comfffn.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
comffn.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
comffn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
comffn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
comffn.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) |
8 |
|
ovex |
⊢ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ∈ V |
9 |
7 8
|
fnmpoi |
⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
11 |
1 2 3 10 4 5 6
|
comffval |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) ) |
12 |
11
|
fneq1d |
⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ) ) |
13 |
9 12
|
mpbiri |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ) |