Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval.o |
⊢ 𝑂 = ( compf ‘ 𝐶 ) |
2 |
|
comfffval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
comfffval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
comfffval.x |
⊢ · = ( comp ‘ 𝐶 ) |
5 |
|
comffval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
comffval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
comffval.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
1 2 3 4
|
comfffval |
⊢ 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) ) ) ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑥 = 〈 𝑋 , 𝑌 〉 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
12 |
|
op2ndg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
13 |
5 6 12
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
15 |
11 14
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑥 ) = 𝑌 ) |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑧 = 𝑍 ) |
17 |
15 16
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
18 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
19 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) |
20 |
18 19
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝑋 𝐻 𝑌 ) ) |
21 |
10 16
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑥 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
22 |
21
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) |
23 |
17 20 22
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
24 |
5 6
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
25 |
|
ovex |
⊢ ( 𝑌 𝐻 𝑍 ) ∈ V |
26 |
|
ovex |
⊢ ( 𝑋 𝐻 𝑌 ) ∈ V |
27 |
25 26
|
mpoex |
⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ∈ V ) |
29 |
9 23 24 7 28
|
ovmpod |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |