Metamath Proof Explorer


Theorem comfval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval.o 𝑂 = ( compf𝐶 )
comfffval.b 𝐵 = ( Base ‘ 𝐶 )
comfffval.h 𝐻 = ( Hom ‘ 𝐶 )
comfffval.x · = ( comp ‘ 𝐶 )
comffval.x ( 𝜑𝑋𝐵 )
comffval.y ( 𝜑𝑌𝐵 )
comffval.z ( 𝜑𝑍𝐵 )
comfval.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
comfval.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
Assertion comfval ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 comfffval.o 𝑂 = ( compf𝐶 )
2 comfffval.b 𝐵 = ( Base ‘ 𝐶 )
3 comfffval.h 𝐻 = ( Hom ‘ 𝐶 )
4 comfffval.x · = ( comp ‘ 𝐶 )
5 comffval.x ( 𝜑𝑋𝐵 )
6 comffval.y ( 𝜑𝑌𝐵 )
7 comffval.z ( 𝜑𝑍𝐵 )
8 comfval.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
9 comfval.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
10 1 2 3 4 5 6 7 comffval ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) ) )
11 oveq12 ( ( 𝑔 = 𝐺𝑓 = 𝐹 ) → ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )
12 11 adantl ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑓 = 𝐹 ) ) → ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )
13 ovexd ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ∈ V )
14 10 12 9 8 13 ovmpod ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )