Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval.o |
⊢ 𝑂 = ( compf ‘ 𝐶 ) |
2 |
|
comfffval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
comfffval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
comfffval.x |
⊢ · = ( comp ‘ 𝐶 ) |
5 |
|
comffval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
comffval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
comffval.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
comfval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
|
comfval.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
10 |
1 2 3 4 5 6 7
|
comffval |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
11 |
|
oveq12 |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
13 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ V ) |
14 |
10 12 9 8 13
|
ovmpod |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |