Metamath Proof Explorer


Theorem comfval2

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval2.o 𝑂 = ( compf𝐶 )
comfffval2.b 𝐵 = ( Base ‘ 𝐶 )
comfffval2.h 𝐻 = ( Homf𝐶 )
comfffval2.x · = ( comp ‘ 𝐶 )
comffval2.x ( 𝜑𝑋𝐵 )
comffval2.y ( 𝜑𝑌𝐵 )
comffval2.z ( 𝜑𝑍𝐵 )
comfval2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
comfval2.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
Assertion comfval2 ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 comfffval2.o 𝑂 = ( compf𝐶 )
2 comfffval2.b 𝐵 = ( Base ‘ 𝐶 )
3 comfffval2.h 𝐻 = ( Homf𝐶 )
4 comfffval2.x · = ( comp ‘ 𝐶 )
5 comffval2.x ( 𝜑𝑋𝐵 )
6 comffval2.y ( 𝜑𝑌𝐵 )
7 comffval2.z ( 𝜑𝑍𝐵 )
8 comfval2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
9 comfval2.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
10 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
11 3 2 10 5 6 homfval ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
12 8 11 eleqtrd ( 𝜑𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
13 3 2 10 6 7 homfval ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) )
14 9 13 eleqtrd ( 𝜑𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) )
15 1 2 10 4 5 6 7 12 14 comfval ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )