Metamath Proof Explorer


Theorem compleq

Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion compleq ( 𝐴 = 𝐵 ↔ ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 complss ( 𝐴𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) )
2 complss ( 𝐵𝐴 ↔ ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) )
3 1 2 anbi12ci ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ∧ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 eqss ( ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ↔ ( ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ∧ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) )
6 3 4 5 3bitr4i ( 𝐴 = 𝐵 ↔ ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) )