Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | compleq | ⊢ ( 𝐴 = 𝐵 ↔ ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | complss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) | |
2 | complss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ) | |
3 | 1 2 | anbi12ci | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ∧ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | eqss | ⊢ ( ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ↔ ( ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ∧ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( 𝐴 = 𝐵 ↔ ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ) |