Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | compleq | ⊢ ( 𝐴 = 𝐵 ↔ ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | complss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) | |
| 2 | complss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ) | |
| 3 | 1 2 | anbi12ci | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ∧ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) ) | 
| 4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 5 | eqss | ⊢ ( ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ↔ ( ( V ∖ 𝐴 ) ⊆ ( V ∖ 𝐵 ) ∧ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) ) | |
| 6 | 3 4 5 | 3bitr4i | ⊢ ( 𝐴 = 𝐵 ↔ ( V ∖ 𝐴 ) = ( V ∖ 𝐵 ) ) |