Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | complss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscon | ⊢ ( 𝐴 ⊆ 𝐵 → ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) | |
2 | sscon | ⊢ ( ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) → ( V ∖ ( V ∖ 𝐴 ) ) ⊆ ( V ∖ ( V ∖ 𝐵 ) ) ) | |
3 | ddif | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 | |
4 | ddif | ⊢ ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵 | |
5 | 2 3 4 | 3sstr3g | ⊢ ( ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
6 | 1 5 | impbii | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) |