Metamath Proof Explorer


Theorem complss

Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by BJ, 19-Mar-2021)

Ref Expression
Assertion complss ( 𝐴𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sscon ( 𝐴𝐵 → ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) )
2 sscon ( ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) → ( V ∖ ( V ∖ 𝐴 ) ) ⊆ ( V ∖ ( V ∖ 𝐵 ) ) )
3 ddif ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴
4 ddif ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵
5 2 3 4 3sstr3g ( ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) → 𝐴𝐵 )
6 1 5 impbii ( 𝐴𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) )