Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | complss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sscon | ⊢ ( 𝐴 ⊆ 𝐵 → ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) | |
| 2 | sscon | ⊢ ( ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) → ( V ∖ ( V ∖ 𝐴 ) ) ⊆ ( V ∖ ( V ∖ 𝐵 ) ) ) | |
| 3 | ddif | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 | |
| 4 | ddif | ⊢ ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵 | |
| 5 | 2 3 4 | 3sstr3g | ⊢ ( ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) → 𝐴 ⊆ 𝐵 ) | 
| 6 | 1 5 | impbii | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ ( V ∖ 𝐴 ) ) |