| Step | Hyp | Ref | Expression | 
						
							| 1 |  | comppfsc.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | elpwi | ⊢ ( 𝑐  ∈  𝒫  𝐽  →  𝑐  ⊆  𝐽 ) | 
						
							| 3 | 1 | cmpcov | ⊢ ( ( 𝐽  ∈  Comp  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) | 
						
							| 4 |  | elfpw | ⊢ ( 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin )  ↔  ( 𝑑  ⊆  𝑐  ∧  𝑑  ∈  Fin ) ) | 
						
							| 5 |  | finptfin | ⊢ ( 𝑑  ∈  Fin  →  𝑑  ∈  PtFin ) | 
						
							| 6 | 5 | anim1i | ⊢ ( ( 𝑑  ∈  Fin  ∧  ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  PtFin  ∧  ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 7 | 6 | anassrs | ⊢ ( ( ( 𝑑  ∈  Fin  ∧  𝑑  ⊆  𝑐 )  ∧  𝑋  =  ∪  𝑑 )  →  ( 𝑑  ∈  PtFin  ∧  ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 8 | 7 | ancom1s | ⊢ ( ( ( 𝑑  ⊆  𝑐  ∧  𝑑  ∈  Fin )  ∧  𝑋  =  ∪  𝑑 )  →  ( 𝑑  ∈  PtFin  ∧  ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 9 | 4 8 | sylanb | ⊢ ( ( 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin )  ∧  𝑋  =  ∪  𝑑 )  →  ( 𝑑  ∈  PtFin  ∧  ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 10 | 9 | reximi2 | ⊢ ( ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( ( 𝐽  ∈  Comp  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) | 
						
							| 12 | 11 | 3exp | ⊢ ( 𝐽  ∈  Comp  →  ( 𝑐  ⊆  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 13 | 2 12 | syl5 | ⊢ ( 𝐽  ∈  Comp  →  ( 𝑐  ∈  𝒫  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 14 | 13 | ralrimiv | ⊢ ( 𝐽  ∈  Comp  →  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 15 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝐽  →  𝑎  ⊆  𝐽 ) | 
						
							| 16 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑎 | 
						
							| 17 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 18 | 16 17 | elini | ⊢ ∅  ∈  ( 𝒫  𝑎  ∩  Fin ) | 
						
							| 19 |  | unieq | ⊢ ( 𝑏  =  ∅  →  ∪  𝑏  =  ∪  ∅ ) | 
						
							| 20 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( 𝑏  =  ∅  →  ∪  𝑏  =  ∅ ) | 
						
							| 22 | 21 | rspceeqv | ⊢ ( ( ∅  ∈  ( 𝒫  𝑎  ∩  Fin )  ∧  𝑋  =  ∅ )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) | 
						
							| 23 | 18 22 | mpan | ⊢ ( 𝑋  =  ∅  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) | 
						
							| 24 | 23 | a1i13 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( 𝑋  =  ∅  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 25 |  | n0 | ⊢ ( 𝑋  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝑋 ) | 
						
							| 26 |  | simp2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  𝑋  =  ∪  𝑎 ) | 
						
							| 27 | 26 | eleq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( 𝑥  ∈  𝑋  ↔  𝑥  ∈  ∪  𝑎 ) ) | 
						
							| 28 | 27 | biimpd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( 𝑥  ∈  𝑋  →  𝑥  ∈  ∪  𝑎 ) ) | 
						
							| 29 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  𝑎  ↔  ∃ 𝑠  ∈  𝑎 𝑥  ∈  𝑠 ) | 
						
							| 30 | 28 29 | imbitrdi | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( 𝑥  ∈  𝑋  →  ∃ 𝑠  ∈  𝑎 𝑥  ∈  𝑠 ) ) | 
						
							| 31 |  | simpl3 | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑎  ⊆  𝐽 ) | 
						
							| 32 |  | simprl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑠  ∈  𝑎 ) | 
						
							| 33 | 31 32 | sseldd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑠  ∈  𝐽 ) | 
						
							| 34 |  | elssuni | ⊢ ( 𝑠  ∈  𝐽  →  𝑠  ⊆  ∪  𝐽 ) | 
						
							| 35 | 34 1 | sseqtrrdi | ⊢ ( 𝑠  ∈  𝐽  →  𝑠  ⊆  𝑋 ) | 
						
							| 36 | 33 35 | syl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑠  ⊆  𝑋 ) | 
						
							| 37 | 36 | ralrimivw | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ∀ 𝑝  ∈  𝑎 𝑠  ⊆  𝑋 ) | 
						
							| 38 |  | iunss | ⊢ ( ∪  𝑝  ∈  𝑎 𝑠  ⊆  𝑋  ↔  ∀ 𝑝  ∈  𝑎 𝑠  ⊆  𝑋 ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ∪  𝑝  ∈  𝑎 𝑠  ⊆  𝑋 ) | 
						
							| 40 |  | ssequn1 | ⊢ ( ∪  𝑝  ∈  𝑎 𝑠  ⊆  𝑋  ↔  ( ∪  𝑝  ∈  𝑎 𝑠  ∪  𝑋 )  =  𝑋 ) | 
						
							| 41 | 39 40 | sylib | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ∪  𝑝  ∈  𝑎 𝑠  ∪  𝑋 )  =  𝑋 ) | 
						
							| 42 |  | simpl2 | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑋  =  ∪  𝑎 ) | 
						
							| 43 |  | uniiun | ⊢ ∪  𝑎  =  ∪  𝑝  ∈  𝑎 𝑝 | 
						
							| 44 | 42 43 | eqtrdi | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑋  =  ∪  𝑝  ∈  𝑎 𝑝 ) | 
						
							| 45 | 44 | uneq2d | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ∪  𝑝  ∈  𝑎 𝑠  ∪  𝑋 )  =  ( ∪  𝑝  ∈  𝑎 𝑠  ∪  ∪  𝑝  ∈  𝑎 𝑝 ) ) | 
						
							| 46 | 41 45 | eqtr3d | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑋  =  ( ∪  𝑝  ∈  𝑎 𝑠  ∪  ∪  𝑝  ∈  𝑎 𝑝 ) ) | 
						
							| 47 |  | iunun | ⊢ ∪  𝑝  ∈  𝑎 ( 𝑠  ∪  𝑝 )  =  ( ∪  𝑝  ∈  𝑎 𝑠  ∪  ∪  𝑝  ∈  𝑎 𝑝 ) | 
						
							| 48 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 49 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 50 | 48 49 | unex | ⊢ ( 𝑠  ∪  𝑝 )  ∈  V | 
						
							| 51 | 50 | dfiun3 | ⊢ ∪  𝑝  ∈  𝑎 ( 𝑠  ∪  𝑝 )  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 52 | 47 51 | eqtr3i | ⊢ ( ∪  𝑝  ∈  𝑎 𝑠  ∪  ∪  𝑝  ∈  𝑎 𝑝 )  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 53 | 46 52 | eqtrdi | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑋  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) ) | 
						
							| 54 |  | simpll1 | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  𝑝  ∈  𝑎 )  →  𝐽  ∈  Top ) | 
						
							| 55 | 33 | adantr | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  𝑝  ∈  𝑎 )  →  𝑠  ∈  𝐽 ) | 
						
							| 56 | 31 | sselda | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  𝑝  ∈  𝑎 )  →  𝑝  ∈  𝐽 ) | 
						
							| 57 |  | unopn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑠  ∈  𝐽  ∧  𝑝  ∈  𝐽 )  →  ( 𝑠  ∪  𝑝 )  ∈  𝐽 ) | 
						
							| 58 | 54 55 56 57 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  𝑝  ∈  𝑎 )  →  ( 𝑠  ∪  𝑝 )  ∈  𝐽 ) | 
						
							| 59 | 58 | fmpttd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) : 𝑎 ⟶ 𝐽 ) | 
						
							| 60 | 59 | frnd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ⊆  𝐽 ) | 
						
							| 61 |  | elpw2g | ⊢ ( 𝐽  ∈  Top  →  ( ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∈  𝒫  𝐽  ↔  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ⊆  𝐽 ) ) | 
						
							| 62 | 61 | 3ad2ant1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∈  𝒫  𝐽  ↔  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ⊆  𝐽 ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∈  𝒫  𝐽  ↔  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ⊆  𝐽 ) ) | 
						
							| 64 | 60 63 | mpbird | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∈  𝒫  𝐽 ) | 
						
							| 65 |  | unieq | ⊢ ( 𝑐  =  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ∪  𝑐  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( 𝑐  =  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ( 𝑋  =  ∪  𝑐  ↔  𝑋  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) ) ) | 
						
							| 67 |  | sseq2 | ⊢ ( 𝑐  =  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ( 𝑑  ⊆  𝑐  ↔  𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) ) ) | 
						
							| 68 | 67 | anbi1d | ⊢ ( 𝑐  =  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ( ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 )  ↔  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 69 | 68 | rexbidv | ⊢ ( 𝑐  =  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ( ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 )  ↔  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 70 | 66 69 | imbi12d | ⊢ ( 𝑐  =  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ( ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  ↔  ( 𝑋  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 71 | 70 | rspcv | ⊢ ( ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∈  𝒫  𝐽  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑋  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 72 | 64 71 | syl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑋  =  ∪  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 73 | 53 72 | mpid | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 74 |  | simprr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑥  ∈  𝑠 ) | 
						
							| 75 |  | ssel2 | ⊢ ( ( 𝑎  ⊆  𝐽  ∧  𝑠  ∈  𝑎 )  →  𝑠  ∈  𝐽 ) | 
						
							| 76 | 75 | 3ad2antl3 | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  𝑠  ∈  𝑎 )  →  𝑠  ∈  𝐽 ) | 
						
							| 77 | 76 | adantrr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑠  ∈  𝐽 ) | 
						
							| 78 |  | elunii | ⊢ ( ( 𝑥  ∈  𝑠  ∧  𝑠  ∈  𝐽 )  →  𝑥  ∈  ∪  𝐽 ) | 
						
							| 79 | 74 77 78 | syl2anc | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑥  ∈  ∪  𝐽 ) | 
						
							| 80 | 79 1 | eleqtrrdi | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 82 |  | simprr | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  𝑋  =  ∪  𝑑 ) | 
						
							| 83 | 81 82 | eleqtrd | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  𝑥  ∈  ∪  𝑑 ) | 
						
							| 84 |  | eqid | ⊢ ∪  𝑑  =  ∪  𝑑 | 
						
							| 85 | 84 | ptfinfin | ⊢ ( ( 𝑑  ∈  PtFin  ∧  𝑥  ∈  ∪  𝑑 )  →  { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 }  ∈  Fin ) | 
						
							| 86 | 85 | expcom | ⊢ ( 𝑥  ∈  ∪  𝑑  →  ( 𝑑  ∈  PtFin  →  { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 }  ∈  Fin ) ) | 
						
							| 87 | 83 86 | syl | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  PtFin  →  { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 }  ∈  Fin ) ) | 
						
							| 88 |  | simprl | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) ) | 
						
							| 89 |  | elun1 | ⊢ ( 𝑥  ∈  𝑠  →  𝑥  ∈  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 90 | 89 | ad2antll | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  𝑥  ∈  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 91 | 90 | ralrimivw | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ∀ 𝑝  ∈  𝑎 𝑥  ∈  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 92 | 50 | rgenw | ⊢ ∀ 𝑝  ∈  𝑎 ( 𝑠  ∪  𝑝 )  ∈  V | 
						
							| 93 |  | eqid | ⊢ ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  =  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 94 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑠  ∪  𝑝 )  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  ( 𝑠  ∪  𝑝 ) ) ) | 
						
							| 95 | 93 94 | ralrnmptw | ⊢ ( ∀ 𝑝  ∈  𝑎 ( 𝑠  ∪  𝑝 )  ∈  V  →  ( ∀ 𝑧  ∈  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) 𝑥  ∈  𝑧  ↔  ∀ 𝑝  ∈  𝑎 𝑥  ∈  ( 𝑠  ∪  𝑝 ) ) ) | 
						
							| 96 | 92 95 | ax-mp | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) 𝑥  ∈  𝑧  ↔  ∀ 𝑝  ∈  𝑎 𝑥  ∈  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 97 | 91 96 | sylibr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ∀ 𝑧  ∈  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) 𝑥  ∈  𝑧 ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ∀ 𝑧  ∈  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) 𝑥  ∈  𝑧 ) | 
						
							| 99 |  | ssralv | ⊢ ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  →  ( ∀ 𝑧  ∈  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) ) 𝑥  ∈  𝑧  →  ∀ 𝑧  ∈  𝑑 𝑥  ∈  𝑧 ) ) | 
						
							| 100 | 88 98 99 | sylc | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ∀ 𝑧  ∈  𝑑 𝑥  ∈  𝑧 ) | 
						
							| 101 |  | rabid2 | ⊢ ( 𝑑  =  { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 }  ↔  ∀ 𝑧  ∈  𝑑 𝑥  ∈  𝑧 ) | 
						
							| 102 | 100 101 | sylibr | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  𝑑  =  { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 } ) | 
						
							| 103 | 102 | eleq1d | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  Fin  ↔  { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 }  ∈  Fin ) ) | 
						
							| 104 | 103 | biimprd | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( { 𝑧  ∈  𝑑  ∣  𝑥  ∈  𝑧 }  ∈  Fin  →  𝑑  ∈  Fin ) ) | 
						
							| 105 | 93 | rnmpt | ⊢ ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  =  { 𝑞  ∣  ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 ) } | 
						
							| 106 | 88 105 | sseqtrdi | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  𝑑  ⊆  { 𝑞  ∣  ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 ) } ) | 
						
							| 107 |  | ssabral | ⊢ ( 𝑑  ⊆  { 𝑞  ∣  ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 ) }  ↔  ∀ 𝑞  ∈  𝑑 ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 108 | 106 107 | sylib | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ∀ 𝑞  ∈  𝑑 ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 ) ) | 
						
							| 109 |  | uneq2 | ⊢ ( 𝑝  =  ( 𝑓 ‘ 𝑞 )  →  ( 𝑠  ∪  𝑝 )  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) | 
						
							| 110 | 109 | eqeq2d | ⊢ ( 𝑝  =  ( 𝑓 ‘ 𝑞 )  →  ( 𝑞  =  ( 𝑠  ∪  𝑝 )  ↔  𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) | 
						
							| 111 | 110 | ac6sfi | ⊢ ( ( 𝑑  ∈  Fin  ∧  ∀ 𝑞  ∈  𝑑 ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 ) )  →  ∃ 𝑓 ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) | 
						
							| 112 | 111 | expcom | ⊢ ( ∀ 𝑞  ∈  𝑑 ∃ 𝑝  ∈  𝑎 𝑞  =  ( 𝑠  ∪  𝑝 )  →  ( 𝑑  ∈  Fin  →  ∃ 𝑓 ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) ) | 
						
							| 113 | 108 112 | syl | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  Fin  →  ∃ 𝑓 ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) ) | 
						
							| 114 |  | frn | ⊢ ( 𝑓 : 𝑑 ⟶ 𝑎  →  ran  𝑓  ⊆  𝑎 ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) )  →  ran  𝑓  ⊆  𝑎 ) | 
						
							| 116 | 115 | ad2antll | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ran  𝑓  ⊆  𝑎 ) | 
						
							| 117 | 32 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑠  ∈  𝑎 ) | 
						
							| 118 | 117 | snssd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  { 𝑠 }  ⊆  𝑎 ) | 
						
							| 119 | 116 118 | unssd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝑎 ) | 
						
							| 120 |  | simprl | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑑  ∈  Fin ) | 
						
							| 121 |  | simprrl | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑓 : 𝑑 ⟶ 𝑎 ) | 
						
							| 122 | 121 | ffnd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑓  Fn  𝑑 ) | 
						
							| 123 |  | dffn4 | ⊢ ( 𝑓  Fn  𝑑  ↔  𝑓 : 𝑑 –onto→ ran  𝑓 ) | 
						
							| 124 | 122 123 | sylib | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑓 : 𝑑 –onto→ ran  𝑓 ) | 
						
							| 125 |  | fofi | ⊢ ( ( 𝑑  ∈  Fin  ∧  𝑓 : 𝑑 –onto→ ran  𝑓 )  →  ran  𝑓  ∈  Fin ) | 
						
							| 126 | 120 124 125 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 127 |  | snfi | ⊢ { 𝑠 }  ∈  Fin | 
						
							| 128 |  | unfi | ⊢ ( ( ran  𝑓  ∈  Fin  ∧  { 𝑠 }  ∈  Fin )  →  ( ran  𝑓  ∪  { 𝑠 } )  ∈  Fin ) | 
						
							| 129 | 126 127 128 | sylancl | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ( ran  𝑓  ∪  { 𝑠 } )  ∈  Fin ) | 
						
							| 130 |  | elfpw | ⊢ ( ( ran  𝑓  ∪  { 𝑠 } )  ∈  ( 𝒫  𝑎  ∩  Fin )  ↔  ( ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝑎  ∧  ( ran  𝑓  ∪  { 𝑠 } )  ∈  Fin ) ) | 
						
							| 131 | 119 129 130 | sylanbrc | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ( ran  𝑓  ∪  { 𝑠 } )  ∈  ( 𝒫  𝑎  ∩  Fin ) ) | 
						
							| 132 |  | simplrr | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑋  =  ∪  𝑑 ) | 
						
							| 133 |  | uniiun | ⊢ ∪  𝑑  =  ∪  𝑞  ∈  𝑑 𝑞 | 
						
							| 134 |  | simprrr | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) | 
						
							| 135 |  | iuneq2 | ⊢ ( ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) )  →  ∪  𝑞  ∈  𝑑 𝑞  =  ∪  𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) | 
						
							| 136 | 134 135 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ∪  𝑞  ∈  𝑑 𝑞  =  ∪  𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) | 
						
							| 137 | 133 136 | eqtrid | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ∪  𝑑  =  ∪  𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) | 
						
							| 138 | 132 137 | eqtrd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑋  =  ∪  𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) | 
						
							| 139 |  | ssun2 | ⊢ { 𝑠 }  ⊆  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 140 |  | vsnid | ⊢ 𝑠  ∈  { 𝑠 } | 
						
							| 141 | 139 140 | sselii | ⊢ 𝑠  ∈  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 142 |  | elssuni | ⊢ ( 𝑠  ∈  ( ran  𝑓  ∪  { 𝑠 } )  →  𝑠  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) ) | 
						
							| 143 | 141 142 | ax-mp | ⊢ 𝑠  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 144 |  | fvssunirn | ⊢ ( 𝑓 ‘ 𝑞 )  ⊆  ∪  ran  𝑓 | 
						
							| 145 |  | ssun1 | ⊢ ran  𝑓  ⊆  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 146 | 145 | unissi | ⊢ ∪  ran  𝑓  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 147 | 144 146 | sstri | ⊢ ( 𝑓 ‘ 𝑞 )  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 148 | 143 147 | unssi | ⊢ ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) )  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 149 | 148 | rgenw | ⊢ ∀ 𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) )  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 150 |  | iunss | ⊢ ( ∪  𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) )  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } )  ↔  ∀ 𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) )  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) ) | 
						
							| 151 | 149 150 | mpbir | ⊢ ∪  𝑞  ∈  𝑑 ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) )  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) | 
						
							| 152 | 138 151 | eqsstrdi | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑋  ⊆  ∪  ( ran  𝑓  ∪  { 𝑠 } ) ) | 
						
							| 153 | 31 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑎  ⊆  𝐽 ) | 
						
							| 154 | 116 153 | sstrd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ran  𝑓  ⊆  𝐽 ) | 
						
							| 155 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑠  ∈  𝐽 ) | 
						
							| 156 | 155 | snssd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  { 𝑠 }  ⊆  𝐽 ) | 
						
							| 157 | 154 156 | unssd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝐽 ) | 
						
							| 158 |  | uniss | ⊢ ( ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝐽  →  ∪  ( ran  𝑓  ∪  { 𝑠 } )  ⊆  ∪  𝐽 ) | 
						
							| 159 | 158 1 | sseqtrrdi | ⊢ ( ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝐽  →  ∪  ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝑋 ) | 
						
							| 160 | 157 159 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ∪  ( ran  𝑓  ∪  { 𝑠 } )  ⊆  𝑋 ) | 
						
							| 161 | 152 160 | eqssd | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { 𝑠 } ) ) | 
						
							| 162 |  | unieq | ⊢ ( 𝑏  =  ( ran  𝑓  ∪  { 𝑠 } )  →  ∪  𝑏  =  ∪  ( ran  𝑓  ∪  { 𝑠 } ) ) | 
						
							| 163 | 162 | rspceeqv | ⊢ ( ( ( ran  𝑓  ∪  { 𝑠 } )  ∈  ( 𝒫  𝑎  ∩  Fin )  ∧  𝑋  =  ∪  ( ran  𝑓  ∪  { 𝑠 } ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) | 
						
							| 164 | 131 161 163 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  ( 𝑑  ∈  Fin  ∧  ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) ) ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) | 
						
							| 165 | 164 | expr | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  𝑑  ∈  Fin )  →  ( ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 166 | 165 | exlimdv | ⊢ ( ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  ∧  𝑑  ∈  Fin )  →  ( ∃ 𝑓 ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 167 | 166 | ex | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  Fin  →  ( ∃ 𝑓 ( 𝑓 : 𝑑 ⟶ 𝑎  ∧  ∀ 𝑞  ∈  𝑑 𝑞  =  ( 𝑠  ∪  ( 𝑓 ‘ 𝑞 ) ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 168 | 113 167 | mpdd | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  Fin  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 169 | 87 104 168 | 3syld | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  ∧  ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑑  ∈  PtFin  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 170 | 169 | ex | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 )  →  ( 𝑑  ∈  PtFin  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 171 | 170 | com23 | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( 𝑑  ∈  PtFin  →  ( ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 172 | 171 | rexlimdv | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  ran  ( 𝑝  ∈  𝑎  ↦  ( 𝑠  ∪  𝑝 ) )  ∧  𝑋  =  ∪  𝑑 )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 173 | 73 172 | syld | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  ∧  ( 𝑠  ∈  𝑎  ∧  𝑥  ∈  𝑠 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 174 | 173 | rexlimdvaa | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( ∃ 𝑠  ∈  𝑎 𝑥  ∈  𝑠  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 175 | 30 174 | syld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( 𝑥  ∈  𝑋  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 176 | 175 | exlimdv | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( ∃ 𝑥 𝑥  ∈  𝑋  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 177 | 25 176 | biimtrid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( 𝑋  ≠  ∅  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 178 | 24 177 | pm2.61dne | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ⊆  𝐽 )  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 179 | 15 178 | syl3an3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑎  ∧  𝑎  ∈  𝒫  𝐽 )  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 180 | 179 | 3exp | ⊢ ( 𝐽  ∈  Top  →  ( 𝑋  =  ∪  𝑎  →  ( 𝑎  ∈  𝒫  𝐽  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) ) | 
						
							| 181 | 180 | com24 | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ( 𝑎  ∈  𝒫  𝐽  →  ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) ) | 
						
							| 182 | 181 | ralrimdv | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  ∀ 𝑎  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 183 | 1 | iscmp | ⊢ ( 𝐽  ∈  Comp  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑎  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 184 | 183 | baibr | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑎  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  ↔  𝐽  ∈  Comp ) ) | 
						
							| 185 | 182 184 | sylibd | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) )  →  𝐽  ∈  Comp ) ) | 
						
							| 186 | 14 185 | impbid2 | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  ∈  Comp  ↔  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  PtFin ( 𝑑  ⊆  𝑐  ∧  𝑋  =  ∪  𝑑 ) ) ) ) |