Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
Assertion | compss | ⊢ ( 𝐹 “ 𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑦 ) ∈ 𝐺 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
2 | 1 | compsscnv | ⊢ ◡ 𝐹 = 𝐹 |
3 | 2 | imaeq1i | ⊢ ( ◡ 𝐹 “ 𝐺 ) = ( 𝐹 “ 𝐺 ) |
4 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
5 | 4 | cbvmptv | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) |
6 | 1 5 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) |
7 | 6 | mptpreima | ⊢ ( ◡ 𝐹 “ 𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑦 ) ∈ 𝐺 } |
8 | 3 7 | eqtr3i | ⊢ ( 𝐹 “ 𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑦 ) ∈ 𝐺 } |