Metamath Proof Explorer


Theorem compss

Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
Assertion compss ( 𝐹𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑦 ) ∈ 𝐺 }

Proof

Step Hyp Ref Expression
1 compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
2 1 compsscnv 𝐹 = 𝐹
3 2 imaeq1i ( 𝐹𝐺 ) = ( 𝐹𝐺 )
4 difeq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥 ) = ( 𝐴𝑦 ) )
5 4 cbvmptv ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) ) = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑦 ) )
6 1 5 eqtri 𝐹 = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑦 ) )
7 6 mptpreima ( 𝐹𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑦 ) ∈ 𝐺 }
8 3 7 eqtr3i ( 𝐹𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑦 ) ∈ 𝐺 }