Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | compss | ⊢ ( 𝐹 “ 𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑦 ) ∈ 𝐺 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | 1 | compsscnv | ⊢ ◡ 𝐹 = 𝐹 |
| 3 | 2 | imaeq1i | ⊢ ( ◡ 𝐹 “ 𝐺 ) = ( 𝐹 “ 𝐺 ) |
| 4 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 5 | 4 | cbvmptv | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) |
| 6 | 1 5 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) |
| 7 | 6 | mptpreima | ⊢ ( ◡ 𝐹 “ 𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑦 ) ∈ 𝐺 } |
| 8 | 3 7 | eqtr3i | ⊢ ( 𝐹 “ 𝐺 ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑦 ) ∈ 𝐺 } |