Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
2 |
|
cnvopab |
⊢ ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
3 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
4 |
3
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) |
5 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
6 |
1 4 5
|
3eqtri |
⊢ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
7 |
6
|
cnveqi |
⊢ ◡ 𝐹 = ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
8 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) } |
9 |
|
compsscnvlem |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) ) |
10 |
|
compsscnvlem |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ) |
11 |
9 10
|
impbii |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) ) |
12 |
11
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) } |
13 |
8 1 12
|
3eqtr4i |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
14 |
2 7 13
|
3eqtr4i |
⊢ ◡ 𝐹 = 𝐹 |