Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑦 = ( 𝐴 ∖ 𝑥 ) ) |
2 |
|
difss |
⊢ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 |
3 |
1 2
|
eqsstrdi |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑦 ⊆ 𝐴 ) |
4 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
5 |
3 4
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
6 |
1
|
difeq2d |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ) |
7 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) |
9 |
|
dfss4 |
⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
11 |
6 10
|
eqtr2d |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑥 = ( 𝐴 ∖ 𝑦 ) ) |
12 |
5 11
|
jca |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ) |