Metamath Proof Explorer


Theorem compsscnvlem

Description: Lemma for compsscnv . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion compsscnvlem ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → 𝑦 = ( 𝐴𝑥 ) )
2 difss ( 𝐴𝑥 ) ⊆ 𝐴
3 1 2 eqsstrdi ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → 𝑦𝐴 )
4 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
5 3 4 sylibr ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → 𝑦 ∈ 𝒫 𝐴 )
6 1 difeq2d ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → ( 𝐴𝑦 ) = ( 𝐴 ∖ ( 𝐴𝑥 ) ) )
7 elpwi ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
8 7 adantr ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → 𝑥𝐴 )
9 dfss4 ( 𝑥𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 )
10 8 9 sylib ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 )
11 6 10 eqtr2d ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → 𝑥 = ( 𝐴𝑦 ) )
12 5 11 jca ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) )