| Step |
Hyp |
Ref |
Expression |
| 1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
| 2 |
|
difexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑥 ) ∈ V ) |
| 3 |
2
|
ralrimivw |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ V ) |
| 4 |
1
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ V → 𝐹 Fn 𝒫 𝐴 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Fn 𝒫 𝐴 ) |
| 6 |
1
|
compsscnv |
⊢ ◡ 𝐹 = 𝐹 |
| 7 |
6
|
fneq1i |
⊢ ( ◡ 𝐹 Fn 𝒫 𝐴 ↔ 𝐹 Fn 𝒫 𝐴 ) |
| 8 |
5 7
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐹 Fn 𝒫 𝐴 ) |
| 9 |
|
dff1o4 |
⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ↔ ( 𝐹 Fn 𝒫 𝐴 ∧ ◡ 𝐹 Fn 𝒫 𝐴 ) ) |
| 10 |
5 8 9
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) |
| 11 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) |
| 12 |
11
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → 𝑏 ⊆ 𝐴 ) |
| 13 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐴 ∖ 𝑏 ) ) |
| 14 |
12 13
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐴 ∖ 𝑏 ) ) |
| 15 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) |
| 16 |
15
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → 𝑎 ⊆ 𝐴 ) |
| 17 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐴 ∖ 𝑎 ) ) |
| 18 |
16 17
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐴 ∖ 𝑎 ) ) |
| 19 |
14 18
|
psseq12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) ⊊ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐴 ∖ 𝑏 ) ⊊ ( 𝐴 ∖ 𝑎 ) ) ) |
| 20 |
|
difss |
⊢ ( 𝐴 ∖ 𝑎 ) ⊆ 𝐴 |
| 21 |
|
pssdifcom1 |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ⊆ 𝐴 ) → ( ( 𝐴 ∖ 𝑏 ) ⊊ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) ⊊ 𝑏 ) ) |
| 22 |
12 20 21
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐴 ∖ 𝑏 ) ⊊ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) ⊊ 𝑏 ) ) |
| 23 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) = 𝑎 ) |
| 24 |
16 23
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) = 𝑎 ) |
| 25 |
24
|
psseq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) ⊊ 𝑏 ↔ 𝑎 ⊊ 𝑏 ) ) |
| 26 |
19 22 25
|
3bitrrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 ⊊ 𝑏 ↔ ( 𝐹 ‘ 𝑏 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) |
| 27 |
|
vex |
⊢ 𝑏 ∈ V |
| 28 |
27
|
brrpss |
⊢ ( 𝑎 [⊊] 𝑏 ↔ 𝑎 ⊊ 𝑏 ) |
| 29 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑎 ) ∈ V |
| 30 |
29
|
brrpss |
⊢ ( ( 𝐹 ‘ 𝑏 ) [⊊] ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) |
| 31 |
26 28 30
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑏 ) [⊊] ( 𝐹 ‘ 𝑎 ) ) ) |
| 32 |
|
relrpss |
⊢ Rel [⊊] |
| 33 |
32
|
relbrcnv |
⊢ ( ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) [⊊] ( 𝐹 ‘ 𝑎 ) ) |
| 34 |
31 33
|
bitr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ) ) |
| 35 |
34
|
ralrimivva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑎 ∈ 𝒫 𝐴 ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ) ) |
| 36 |
|
df-isom |
⊢ ( 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ↔ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ∧ ∀ 𝑎 ∈ 𝒫 𝐴 ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 37 |
10 35 36
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ) |