Metamath Proof Explorer


Theorem compssiso

Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
Assertion compssiso ( 𝐴𝑉𝐹 Isom [] , [] ( 𝒫 𝐴 , 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
2 difexg ( 𝐴𝑉 → ( 𝐴𝑥 ) ∈ V )
3 2 ralrimivw ( 𝐴𝑉 → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ V )
4 1 fnmpt ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ V → 𝐹 Fn 𝒫 𝐴 )
5 3 4 syl ( 𝐴𝑉𝐹 Fn 𝒫 𝐴 )
6 1 compsscnv 𝐹 = 𝐹
7 6 fneq1i ( 𝐹 Fn 𝒫 𝐴𝐹 Fn 𝒫 𝐴 )
8 5 7 sylibr ( 𝐴𝑉 𝐹 Fn 𝒫 𝐴 )
9 dff1o4 ( 𝐹 : 𝒫 𝐴1-1-onto→ 𝒫 𝐴 ↔ ( 𝐹 Fn 𝒫 𝐴 𝐹 Fn 𝒫 𝐴 ) )
10 5 8 9 sylanbrc ( 𝐴𝑉𝐹 : 𝒫 𝐴1-1-onto→ 𝒫 𝐴 )
11 elpwi ( 𝑏 ∈ 𝒫 𝐴𝑏𝐴 )
12 11 ad2antll ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → 𝑏𝐴 )
13 1 isf34lem1 ( ( 𝐴𝑉𝑏𝐴 ) → ( 𝐹𝑏 ) = ( 𝐴𝑏 ) )
14 12 13 syldan ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐹𝑏 ) = ( 𝐴𝑏 ) )
15 elpwi ( 𝑎 ∈ 𝒫 𝐴𝑎𝐴 )
16 15 ad2antrl ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → 𝑎𝐴 )
17 1 isf34lem1 ( ( 𝐴𝑉𝑎𝐴 ) → ( 𝐹𝑎 ) = ( 𝐴𝑎 ) )
18 16 17 syldan ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐹𝑎 ) = ( 𝐴𝑎 ) )
19 14 18 psseq12d ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐹𝑏 ) ⊊ ( 𝐹𝑎 ) ↔ ( 𝐴𝑏 ) ⊊ ( 𝐴𝑎 ) ) )
20 difss ( 𝐴𝑎 ) ⊆ 𝐴
21 pssdifcom1 ( ( 𝑏𝐴 ∧ ( 𝐴𝑎 ) ⊆ 𝐴 ) → ( ( 𝐴𝑏 ) ⊊ ( 𝐴𝑎 ) ↔ ( 𝐴 ∖ ( 𝐴𝑎 ) ) ⊊ 𝑏 ) )
22 12 20 21 sylancl ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐴𝑏 ) ⊊ ( 𝐴𝑎 ) ↔ ( 𝐴 ∖ ( 𝐴𝑎 ) ) ⊊ 𝑏 ) )
23 dfss4 ( 𝑎𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑎 ) ) = 𝑎 )
24 16 23 sylib ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐴 ∖ ( 𝐴𝑎 ) ) = 𝑎 )
25 24 psseq1d ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐴 ∖ ( 𝐴𝑎 ) ) ⊊ 𝑏𝑎𝑏 ) )
26 19 22 25 3bitrrd ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎𝑏 ↔ ( 𝐹𝑏 ) ⊊ ( 𝐹𝑎 ) ) )
27 vex 𝑏 ∈ V
28 27 brrpss ( 𝑎 [] 𝑏𝑎𝑏 )
29 fvex ( 𝐹𝑎 ) ∈ V
30 29 brrpss ( ( 𝐹𝑏 ) [] ( 𝐹𝑎 ) ↔ ( 𝐹𝑏 ) ⊊ ( 𝐹𝑎 ) )
31 26 28 30 3bitr4g ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 [] 𝑏 ↔ ( 𝐹𝑏 ) [] ( 𝐹𝑎 ) ) )
32 relrpss Rel []
33 32 relbrcnv ( ( 𝐹𝑎 ) [] ( 𝐹𝑏 ) ↔ ( 𝐹𝑏 ) [] ( 𝐹𝑎 ) )
34 31 33 bitr4di ( ( 𝐴𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 [] 𝑏 ↔ ( 𝐹𝑎 ) [] ( 𝐹𝑏 ) ) )
35 34 ralrimivva ( 𝐴𝑉 → ∀ 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ( 𝑎 [] 𝑏 ↔ ( 𝐹𝑎 ) [] ( 𝐹𝑏 ) ) )
36 df-isom ( 𝐹 Isom [] , [] ( 𝒫 𝐴 , 𝒫 𝐴 ) ↔ ( 𝐹 : 𝒫 𝐴1-1-onto→ 𝒫 𝐴 ∧ ∀ 𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴 ( 𝑎 [] 𝑏 ↔ ( 𝐹𝑎 ) [] ( 𝐹𝑏 ) ) ) )
37 10 35 36 sylanbrc ( 𝐴𝑉𝐹 Isom [] , [] ( 𝒫 𝐴 , 𝒫 𝐴 ) )