Metamath Proof Explorer


Theorem comraddd

Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses comraddd.1 ( 𝜑𝐵 ∈ ℂ )
comraddd.2 ( 𝜑𝐶 ∈ ℂ )
comraddd.3 ( 𝜑𝐴 = ( 𝐵 + 𝐶 ) )
Assertion comraddd ( 𝜑𝐴 = ( 𝐶 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 comraddd.1 ( 𝜑𝐵 ∈ ℂ )
2 comraddd.2 ( 𝜑𝐶 ∈ ℂ )
3 comraddd.3 ( 𝜑𝐴 = ( 𝐵 + 𝐶 ) )
4 1 2 addcomd ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
5 3 4 eqtrd ( 𝜑𝐴 = ( 𝐶 + 𝐵 ) )