Metamath Proof Explorer
Description: Commute RHS addition, in deduction form. (Contributed by David A.
Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
comraddd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
comraddd.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
|
|
comraddd.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐵 + 𝐶 ) ) |
|
Assertion |
comraddd |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 + 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
comraddd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
2 |
|
comraddd.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
3 |
|
comraddd.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐵 + 𝐶 ) ) |
4 |
1 2
|
addcomd |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
5 |
3 4
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 + 𝐵 ) ) |