Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con1bid.1 | ⊢ ( 𝜑 → ( ¬ 𝜓 ↔ 𝜒 ) ) | |
Assertion | con1bid | ⊢ ( 𝜑 → ( ¬ 𝜒 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | ⊢ ( 𝜑 → ( ¬ 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | bicomd | ⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |
3 | 2 | con2bid | ⊢ ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) ) |
4 | 3 | bicomd | ⊢ ( 𝜑 → ( ¬ 𝜒 ↔ 𝜓 ) ) |