Description: A contraposition inference. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con1bii.1 | ⊢ ( ¬ 𝜑 ↔ 𝜓 ) | |
Assertion | con1bii | ⊢ ( ¬ 𝜓 ↔ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bii.1 | ⊢ ( ¬ 𝜑 ↔ 𝜓 ) | |
2 | notnotb | ⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) | |
3 | 2 1 | xchbinx | ⊢ ( 𝜑 ↔ ¬ 𝜓 ) |
4 | 3 | bicomi | ⊢ ( ¬ 𝜓 ↔ 𝜑 ) |